Penalized principal logistic regression for sparse sufficient dimension reduction

被引:15
|
作者
Shin, Seung Jun [1 ]
Artemiou, Andreas
机构
[1] Korea Univ, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Max-SCAD penalty; Principal logistic regression; Sparse sufficient dimension reduction; Sufficient dimension reduction; VARIABLE SELECTION; INVERSE REGRESSION; ALGORITHMS; LIKELIHOOD; MODEL;
D O I
10.1016/j.csda.2016.12.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Sufficient dimension reduction (SDR) is a successive tool for reducing the dimensionality of predictors by finding the central subspace, a minimal subspace of predictors that preserves all the regression information. When predictor dimension is large, it is often assumed that only a small number of predictors is informative. In this regard, sparse SDR is desired to achieve variable selection and dimension reduction simultaneously. We propose a principal logistic regression (PLR) as a new SDR tool and further develop its penalized version for sparse SDR. Asymptotic analysis shows that the penalized PLR enjoys the oracle property. Numerical investigation supports the advantageous performance of the proposed methods. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 58
页数:11
相关论文
共 50 条
  • [1] Principal weighted logistic regression for sufficient dimension reduction in binary classification
    Boyoung Kim
    Seung Jun Shin
    Journal of the Korean Statistical Society, 2019, 48 : 194 - 206
  • [2] Principal weighted logistic regression for sufficient dimension reduction in binary classification
    Kim, Boyoung
    Shin, Seung Jun
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (02) : 194 - 206
  • [3] Principal quantile regression for sufficient dimension reduction with heteroscedasticity
    Wang, Chong
    Shin, Seung Jun
    Wu, Yichao
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 2114 - 2140
  • [4] Penalized robust estimators in sparse logistic regression
    Bianco, Ana M.
    Boente, Graciela
    Chebi, Gonzalo
    TEST, 2022, 31 (03) : 563 - 594
  • [5] Penalized robust estimators in sparse logistic regression
    Ana M. Bianco
    Graciela Boente
    Gonzalo Chebi
    TEST, 2022, 31 : 563 - 594
  • [6] Sparse sufficient dimension reduction
    Li, Lexin
    BIOMETRIKA, 2007, 94 (03) : 603 - 613
  • [7] Sparse sufficient dimension reduction with heteroscedasticity
    Cheng, Haoyang
    Cui, Wenquan
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (01)
  • [8] Sparse kernel sufficient dimension reduction
    Liu, Bingyuan
    Xue, Lingzhou
    JOURNAL OF NONPARAMETRIC STATISTICS, 2024,
  • [9] Dimension reduction-based penalized logistic regression for cancer classification using microarray data
    Shen, L
    Tan, EC
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2005, 2 (02) : 166 - 175
  • [10] Sufficient dimension reduction and prediction in regression
    Adragni, Kofi P.
    Cook, R. Dennis
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1906): : 4385 - 4405