Penalized robust estimators in sparse logistic regression

被引:4
|
作者
Bianco, Ana M. [1 ,2 ]
Boente, Graciela [3 ,4 ]
Chebi, Gonzalo [3 ,4 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[4] Consejo Nacl Invest Cient & Tecn, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
关键词
Logistic regression; Outliers; Penalty functions; Robust estimation; Sparse models; VARIABLE SELECTION; LIKELIHOOD; INFERENCE; LASSO;
D O I
10.1007/s11749-021-00792-w
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sparse covariates are frequent in classification and regression problems where the task of variable selection is usually of interest. As it is well known, sparse statistical models correspond to situations where there are only a small number of nonzero parameters, and for that reason, they are much easier to interpret than dense ones. In this paper, we focus on the logistic regression model and our aim is to address robust and penalized estimation for the regression parameter. We introduce a family of penalized weighted M-type estimators for the logistic regression parameter that are stable against atypical data. We explore different penalization functions including the so-called Sign penalty. We provide a careful analysis of the estimators convergence rates as well as their variable selection capability and asymptotic distribution for fixed and random penalties. A robust cross-validation criterion is also proposed. Through a numerical study, we compare the finite sample performance of the classical and robust penalized estimators, under different contamination scenarios. The analysis of real datasets enables to investigate the stability of the penalized estimators in the presence of outliers.
引用
收藏
页码:563 / 594
页数:32
相关论文
共 50 条
  • [41] Robust Logistic Regression and Classification
    Feng, Jiashi
    Xu, Huan
    Mannor, Shie
    Yan, Shuicheng
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [42] Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification
    Cao, Faxian
    Yang, Zhijing
    Ren, Jinchang
    Ling, Wing-Kuen
    Zhao, Huimin
    Marshall, Stephen
    [J]. REMOTE SENSING, 2017, 9 (12)
  • [43] Distributionally Robust Logistic Regression
    Shafieezadeh-Abadeh, Soroosh
    Esfahani, Peyman Mohajerin
    Kuhn, Daniel
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [44] Robust functional logistic regression
    Akturk, Berkay
    Beyaztas, Ufuk
    Shang, Han Lin
    Mandal, Abhijit
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024,
  • [45] Robust polytomous logistic regression
    Miron, Julien
    Poilane, Benjamin
    Cantoni, Eva
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 176
  • [46] Penalized likelihood-type estimators for generalized nonparametric regression
    Cox, DD
    OSullivan, F
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1996, 56 (02) : 185 - 206
  • [47] Sparse brain network using penalized linear regression
    Lee, Hyekyoung
    Lee, Dong Soo
    Kang, Hyejin
    Kim, Boong-Nyun
    Chung, Moo K.
    [J]. MEDICAL IMAGING 2011: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2011, 7965
  • [48] Gene expression data classification with robust sparse logistic regression using fused regularisation
    Lavanya, Kampa
    Rambabu, Pemula
    Suresh, G. Vijay
    Bhandari, Rahul
    [J]. INTERNATIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING, 2023, 42 (04) : 281 - 291
  • [49] Confidence Intervals for Sparse Penalized Regression With Random Designs
    Yu, Guan
    Yin, Liang
    Lu, Shu
    Liu, Yufeng
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 794 - 809
  • [50] Sparse Poisson regression with penalized weighted score function
    Jia, Jinzhu
    Xie, Fang
    Xu, Lihu
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 2898 - 2920