Confidence Intervals for Sparse Penalized Regression With Random Designs

被引:3
|
作者
Yu, Guan [1 ]
Yin, Liang [2 ]
Lu, Shu [2 ]
Liu, Yufeng [3 ]
机构
[1] SUNY Buffalo, Dept Biostat, Buffalo, NY USA
[2] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Lineberger Comprehens Canc Ctr, Carolina Ctr Genome Sci, Dept Stat & Operat Res,Dept Genet,Dept Biostat, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
Confidence interval; Nonconvex penalty; Penalized regression; Random design; Variational inequality; VARIABLE SELECTION; REGIONS; SHRINKAGE; LASSO; TESTS;
D O I
10.1080/01621459.2019.1585251
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
With the abundance of large data, sparse penalized regression techniques are commonly used in data analysis due to the advantage of simultaneous variable selection and estimation. A number of convex as well as nonconvex penalties have been proposed in the literature to achieve sparse estimates. Despite intense work in this area, how to perform valid inference for sparse penalized regression with a general penalty remains to be an active research problem. In this article, by making use of state-of-the-art optimization tools in stochastic variational inequality theory, we propose a unified framework to construct confidence intervals for sparse penalized regression with a wide range of penalties, including convex and nonconvex penalties. We study the inference for parameters under the population version of the penalized regression as well as parameters of the underlying linear model. Theoretical convergence properties of the proposed method are obtained. Several simulated and real data examples are presented to demonstrate the validity and effectiveness of the proposed inference procedure. for this article are available online.
引用
收藏
页码:794 / 809
页数:16
相关论文
共 50 条
  • [1] Confidence intervals for multinomial logistic regression in sparse data
    Bull, Shelley B.
    Lewinger, Juan Pablo
    Lee, Sophia S. F.
    [J]. STATISTICS IN MEDICINE, 2007, 26 (04) : 903 - 918
  • [2] On confidence intervals for generalized additive models based on penalized regression splines
    Wood, Simon N.
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2006, 48 (04) : 445 - 464
  • [3] ROBUST NONPARAMETRIC CONFIDENCE INTERVALS FOR REGRESSION-DISCONTINUITY DESIGNS
    Calonico, Sebastian
    Cattaneo, Matias D.
    Titiunik, Rocio
    [J]. ECONOMETRICA, 2014, 82 (06) : 2295 - 2326
  • [4] Confidence intervals for sparse precision matrix estimation via Lasso penalized D-trace loss
    Huang Xudong
    Li Mengmeng
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (24) : 12299 - 12316
  • [5] Confidence intervals in monotone regression
    Groeneboom, Piet
    Jongbloed, Geurt
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2024,
  • [6] Confidence intervals for nonparametric regression
    Brown, Lawrence D.
    Fu, Xin
    Zhao, Linda H.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (01) : 149 - 163
  • [7] Using Penalized Spline Regression to calculate Mean Trajectories including Confidence Intervals of Human Motion Data
    Carton, Daniel
    Turnwald, Annemarie
    Olszowy, Wiktor
    Buss, Martin
    Wollherr, Dirk
    [J]. 2014 IEEE WORKSHOP ON ADVANCED ROBOTICS AND ITS SOCIAL IMPACTS (ARSO), 2014, : 76 - 81
  • [8] A Dual Neural Network Based On Confidence Intervals For Fuzzy Random Regression Problems
    Yu, Hang
    Lu, Jie
    Zhang, Guangquan
    Wu, Dianshuang
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,
  • [9] CONFIDENCE SETS IN SPARSE REGRESSION
    Nickl, Richard
    van de Geer, Sara
    [J]. ANNALS OF STATISTICS, 2013, 41 (06): : 2852 - 2876
  • [10] Penalized robust estimators in sparse logistic regression
    Ana M. Bianco
    Graciela Boente
    Gonzalo Chebi
    [J]. TEST, 2022, 31 : 563 - 594