The Performance of Classical and Robust Logistic Regression Estimators in the Presence of Outliers

被引:0
|
作者
Habshah, M. [1 ]
Syaiba, B. A. [2 ]
机构
[1] Univ Putra Malaysia, Inst Math Res, Lab Appl & Computat Stat, Serdang 43400, Selangor, Malaysia
[2] Univ Putra Malaysia, Fac Sci, Dept Math, Serdang 43400, Selangor, Malaysia
来源
关键词
Maximum Likelihood Estimator; Robust Estimators; Outliers; Goodness of Fit; Monte Carlo Simulation;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is now evident that the estimation of logistic regression parameters, using Maximum Likelihood Estimator (MLE), suffers a huge drawback in the presence of outliers. An alternative approach is to use robust logistic regression estimators, such as Mallows type leverage dependent weights estimator (MALLOWS), Conditionally Unbiased Bounded Influence Function estimator (CUBIF), Bianco and Yohai estimator (BY), and Weighted Bianco and Yohai estimator (WBY). This paper investigates the robustness of the preceding robust estimators by using real data sets and Monte Carlo simulations. The results indicate that the MLE behaves poorly in the presence of outliers. On the other hand, the WBY estimator is more efficient than the other existing robust estimators. Thus, it is suggested that the WBY estimator be employed when outliers are present in the data to obtain a reliable estimate.
引用
收藏
页码:313 / 325
页数:13
相关论文
共 50 条
  • [1] Robust Logistic Principal Component Regression for Classification of Data in presence of Outliers
    Wu, H. C.
    Chan, S. C.
    Tsui, K. M.
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 2012), 2012,
  • [2] Outliers and Robust Logistic Regression in Health Sciences
    Cutanda Henriquez, Francisco
    [J]. REVISTA ESPANOLA DE SALUD PUBLICA, 2008, 82 (06): : 617 - 625
  • [3] Asymptotic Characterisation of the Performance of Robust Linear Regression in the Presence of Outliers
    Vilucchio, Matteo
    Troiani, Emanuele
    Erba, Vittorio
    Krzakala, Florent
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [4] An Improved Family of Estimators for Estimating Population Mean Using Robust Regression in the Presence of Outliers
    Nuanpan Lawson
    [J]. Lobachevskii Journal of Mathematics, 2022, 43 : 3368 - 3375
  • [5] Some Exponential Estimators in Sample Survey using Robust Regression Method in the Presence of Outliers
    Vinay Kumar Yadav
    Shakti Prasad
    [J]. Lobachevskii Journal of Mathematics, 2024, 45 (4) : 1674 - 1690
  • [6] The Comparison Between Several Robust Ridge Regression Estimators in the Presence of Multicollinearity and Multiple Outliers
    Zahari, Siti Meriam
    Ramli, Norazan Mohamed
    Moktar, Balkiah
    Zainol, Mohammad Said
    [J]. STATISTICS AND OPERATIONAL RESEARCH INTERNATIONAL CONFERENCE (SORIC 2013), 2014, 1613 : 388 - 402
  • [7] An Improved Family of Estimators for Estimating Population Mean Using Robust Regression in the Presence of Outliers
    Lawson, Nuanpan
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (11) : 3368 - 3375
  • [8] Penalized robust estimators in sparse logistic regression
    Ana M. Bianco
    Graciela Boente
    Gonzalo Chebi
    [J]. TEST, 2022, 31 : 563 - 594
  • [9] Penalized robust estimators in sparse logistic regression
    Bianco, Ana M.
    Boente, Graciela
    Chebi, Gonzalo
    [J]. TEST, 2022, 31 (03) : 563 - 594
  • [10] New robust ridge estimators for the linear regression model with outliers
    Majid, Abdul
    Amin, Muhammad
    Aslam, Muhammad
    Ahmad, Shakeel
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (10) : 4717 - 4738