The Performance of Classical and Robust Logistic Regression Estimators in the Presence of Outliers

被引:0
|
作者
Habshah, M. [1 ]
Syaiba, B. A. [2 ]
机构
[1] Univ Putra Malaysia, Inst Math Res, Lab Appl & Computat Stat, Serdang 43400, Selangor, Malaysia
[2] Univ Putra Malaysia, Fac Sci, Dept Math, Serdang 43400, Selangor, Malaysia
来源
关键词
Maximum Likelihood Estimator; Robust Estimators; Outliers; Goodness of Fit; Monte Carlo Simulation;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is now evident that the estimation of logistic regression parameters, using Maximum Likelihood Estimator (MLE), suffers a huge drawback in the presence of outliers. An alternative approach is to use robust logistic regression estimators, such as Mallows type leverage dependent weights estimator (MALLOWS), Conditionally Unbiased Bounded Influence Function estimator (CUBIF), Bianco and Yohai estimator (BY), and Weighted Bianco and Yohai estimator (WBY). This paper investigates the robustness of the preceding robust estimators by using real data sets and Monte Carlo simulations. The results indicate that the MLE behaves poorly in the presence of outliers. On the other hand, the WBY estimator is more efficient than the other existing robust estimators. Thus, it is suggested that the WBY estimator be employed when outliers are present in the data to obtain a reliable estimate.
引用
收藏
页码:313 / 325
页数:13
相关论文
共 50 条