Inferential tools in penalized logistic regression for small and sparse data: A comparative study

被引:8
|
作者
Siino, Marianna [1 ]
Fasola, Salvatore [1 ]
Muggeo, Vito M. R. [1 ]
机构
[1] Univ Palermo, Dept Sci Econ Aziendali & Stat, Palermo, Italy
关键词
Logistic regression; Firth penalized likelihood; sandwich formula; score statistic; gradient statistic; BIAS REDUCTION; CONFIDENCE-INTERVALS;
D O I
10.1177/0962280216661213
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This paper focuses on inferential tools in the logistic regression model fitted by the Firth penalized likelihood. In this context, the Likelihood Ratio statistic is often reported to be the preferred choice as compared to the traditional' Wald statistic. In this work, we consider and discuss a wider range of test statistics, including the robust Wald, the Score, and the recently proposed Gradient statistic. We compare all these asymptotically equivalent statistics in terms of interval estimation and hypothesis testing via simulation experiments and analyses of two real datasets. We find out that the Likelihood Ratio statistic does not appear the best inferential device in the Firth penalized logistic regression.
引用
收藏
页码:1365 / 1375
页数:11
相关论文
共 50 条
  • [1] Penalized robust estimators in sparse logistic regression
    Bianco, Ana M.
    Boente, Graciela
    Chebi, Gonzalo
    [J]. TEST, 2022, 31 (03) : 563 - 594
  • [2] Penalized robust estimators in sparse logistic regression
    Ana M. Bianco
    Graciela Boente
    Gonzalo Chebi
    [J]. TEST, 2022, 31 : 563 - 594
  • [3] Penalized principal logistic regression for sparse sufficient dimension reduction
    Shin, Seung Jun
    Artemiou, Andreas
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 111 : 48 - 58
  • [4] Classification of microarray data with penalized logistic regression
    Eilers, PHC
    Boer, JM
    van Ommen, GJ
    van Houwelingen, HC
    [J]. MICROARRAYS: OPTICAL TECHNOLOGIES AND INFORMATICS, 2001, 4266 : 187 - 198
  • [5] Sparse data and use of logistic regression
    Siddarth, Prabha
    [J]. EPILEPSIA, 2018, 59 (05) : 1085 - 1086
  • [6] Sparse logistic regression on functional data
    Xu, Yunnan
    Du, Pang
    Robertson, John
    Senger, Ryan
    [J]. STATISTICS AND ITS INTERFACE, 2022, 15 (02) : 171 - 179
  • [7] Problems due to small samples and sparse data in conditional logistic regression analysis
    Greenland, S
    Schwartzbaum, JA
    Finkle, WD
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2000, 151 (05) : 531 - 539
  • [8] Logistic Regression Under Sparse Data Conditions
    Walker, David A.
    Smith, Thomas J.
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2019, 18 (02)
  • [9] To tune or not to tune, a case study of ridge logistic regression in small or sparse datasets
    Hana Šinkovec
    Georg Heinze
    Rok Blagus
    Angelika Geroldinger
    [J]. BMC Medical Research Methodology, 21
  • [10] Re: "Problems due to small samples and sparse data in conditional logistic regression analysis"
    Neuenschwander, BE
    Zwahlen, M
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2000, 152 (07) : 688 - 688