Problems due to small samples and sparse data in conditional logistic regression analysis
被引:0
|
作者:
Greenland, S
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA 90024 USAUniv Calif Los Angeles, Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA 90024 USA
Greenland, S
[1
]
Schwartzbaum, JA
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA 90024 USA
Schwartzbaum, JA
Finkle, WD
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA 90024 USA
Finkle, WD
机构:
[1] Univ Calif Los Angeles, Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA 90024 USA
[2] Ohio State Univ, Sch Publ Hlth, Div Epidemiol & Biometr, Columbus, OH 43210 USA
Conditional logistic regression was developed to avoid "sparse-data" biases that can arise in ordinary logistic regression analysis. Nonetheless, it is a large-sample method that can exhibit considerable bias when certain types of matched sets are infrequent or when the model contains too many parameters. Sparse-data bias can cause misleading inferences about confounding, effect modification, dose response, and induction periods, and can interact with other biases. In this paper, the authors describe these problems in the context of matched case-control analysis and provide examples from a study of electrical wiring and childhood leukemia and a study of diet and glioma, The same problems can arise in any likelihood-based analysis, including ordinary logistic regression. The problems can be detected by careful inspection of data and by examining the sensitivity of estimates to category boundaries, variables in the model, and transformations of those variables. One can also apply various bias corrections or turn to methods less sensitive to sparse data than conditional likelihood, such as Bayesian and empirical-Bayes (hierarchical regression) methods.
机构:
Univ Calif Los Angeles, Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA 90095 USA
Greenland, S
Schwartzbaum, JA
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA 90095 USA
Schwartzbaum, JA
Finkle, WD
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA 90095 USA
机构:
Med Univ Vienna, Sect Clin Biometr, Core Unit Med Stat & Informat, A-1090 Vienna, AustriaMed Univ Vienna, Sect Clin Biometr, Core Unit Med Stat & Informat, A-1090 Vienna, Austria
Heinze, Georg
Puhr, Rainer
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ Vienna, Sect Clin Biometr, Core Unit Med Stat & Informat, A-1090 Vienna, AustriaMed Univ Vienna, Sect Clin Biometr, Core Unit Med Stat & Informat, A-1090 Vienna, Austria
机构:
Univ Calif Los Angeles, Semel Inst Neurosci & Human Behav, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Semel Inst Neurosci & Human Behav, Los Angeles, CA 90095 USA