A preconditioned fast finite difference scheme for space-fractional diffusion equations in convex domains

被引:9
|
作者
Du, Ning [1 ]
Sun, Hai-Wei [2 ]
Wang, Hong [3 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Univ Macau, Dept Math, Macau, Peoples R China
[3] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2019年 / 38卷 / 01期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Anomalous diffusion; Finite difference method; Space-fractional diffusion equation; Circulant preconditioner; Penalization;
D O I
10.1007/s40314-019-0769-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fast finite difference method is developed for solving space-fractional diffusion equations with variable coefficient in convex domains using a volume penalization approach. The resulting coefficient matrix can be written as the discretized matrix from the extended rectangular domain plus a diagonal matrix with jumping entries due to the penalization parameter. An efficient preconditioner is constructed based on the combination of two approximate inverse circulant matrices. The preconditioned BiCGSTAB method, with the proposed preconditioner, is implemented for solving the resulting linear system. Numerical results are carried out to demonstrate the utility of the proposed algorithm.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations
    Jianyu Pan
    Michael Ng
    Hong Wang
    [J]. Numerical Algorithms, 2017, 74 : 153 - 173
  • [12] Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations
    Pan, Jianyu
    Ng, Michael
    Wang, Hong
    [J]. NUMERICAL ALGORITHMS, 2017, 74 (01) : 153 - 173
  • [13] A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations
    Yang, Qianqian
    Turner, Ian
    Moroney, Timothy
    Liu, Fawang
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (15-16) : 3755 - 3762
  • [14] Generalized finite difference method for a class of multidimensional space-fractional diffusion equations
    Hong Guang Sun
    Zhaoyang Wang
    Jiayi Nie
    Yong Zhang
    Rui Xiao
    [J]. Computational Mechanics, 2021, 67 : 17 - 32
  • [15] Generalized finite difference method for a class of multidimensional space-fractional diffusion equations
    Sun, Hong Guang
    Wang, Zhaoyang
    Nie, Jiayi
    Zhang, Yong
    Xiao, Rui
    [J]. COMPUTATIONAL MECHANICS, 2021, 67 (01) : 17 - 32
  • [16] Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations
    Wang, Hong
    Du, Ning
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 258 : 305 - 318
  • [17] Fast solution methods for space-fractional diffusion equations
    Wang, Hong
    Du, Ning
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 376 - 383
  • [18] A Robust Preconditioner for Two-dimensional Conservative Space-Fractional Diffusion Equations on Convex Domains
    Xu Chen
    Si-Wen Deng
    Siu-Long Lei
    [J]. Journal of Scientific Computing, 2019, 80 : 1033 - 1057
  • [19] A Robust Preconditioner for Two-dimensional Conservative Space-Fractional Diffusion Equations on Convex Domains
    Chen, Xu
    Deng, Si-Wen
    Lei, Siu-Long
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (02) : 1033 - 1057
  • [20] Finite difference scheme for the time-space fractional diffusion equations
    Cao, Jianxiong
    Li, Changpin
    [J]. CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1440 - 1456