Finite difference scheme for the time-space fractional diffusion equations

被引:13
|
作者
Cao, Jianxiong [1 ]
Li, Changpin [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2013年 / 11卷 / 10期
关键词
time-space fractional diffusion equation; difference scheme; stability; convergence; RANDOM-WALK; SUB-DIFFUSION; SUBDIFFUSION; APPROXIMATIONS; STABILITY;
D O I
10.2478/s11534-013-0261-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we derive two novel finite difference schemes for two types of time-space fractional diffusion equations by adopting weighted and shifted Grunwald operator, which is used to approximate the Riemann-Liouville fractional derivative to the second order accuracy. The stability and convergence of the schemes are analyzed via mathematical induction. Moreover, the illustrative numerical examples are carried out to verify the accuracy and effectiveness of the schemes.
引用
收藏
页码:1440 / 1456
页数:17
相关论文
共 50 条
  • [1] Finite difference scheme for time-space fractional diffusion equation with fractional boundary conditions
    Xie, Changping
    Fang, Shaomei
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3473 - 3487
  • [2] Finite difference method for time-space linear and nonlinear fractional diffusion equations
    Arshad, Sadia
    Bu, Weiping
    Huang, Jianfei
    Tang, Yifa
    Zhao, Yue
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (01) : 202 - 217
  • [3] A Fourth Order Finite Difference Method for Time-Space Fractional Diffusion Equations
    Arshad, Sadia
    Baleanu, Dumitru
    Huang, Jianfei
    Tang, Yifa
    Zhao, Yue
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (04) : 764 - 781
  • [4] A linearized finite difference scheme for time-space fractional nonlinear diffusion-wave equations with initial singularity
    Mohmed Elmandi, Emadidin Gahalla
    Huang, Jianfei
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (05) : 1769 - 1783
  • [5] Crank-Nicolson Finite Difference Scheme for Time-Space Fractional Diffusion Equation
    Takale, Kalyanrao C.
    Sangvikar , Veena V.
    [J]. MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 701 - 710
  • [6] Finite Difference Method for Time-Space Fractional Advection-Diffusion Equations with Riesz Derivative
    Arshad, Sadia
    Baleanu, Dumitru
    Huang, Jianfei
    Al Qurashi, Maysaa Mohamed
    Tang, Yifa
    Zhao, Yue
    [J]. ENTROPY, 2018, 20 (05)
  • [7] Fourth order finite difference schemes for time-space fractional sub-diffusion equations
    Pang, Hong-Kui
    Sun, Hai-Wei
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (06) : 1287 - 1302
  • [8] A finite difference scheme for semilinear space-fractional diffusion equations with time delay
    Hao, Zhaopeng
    Fan, Kai
    Cao, Wanrong
    Sun, Zhizhong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 : 238 - 254
  • [9] A Galerkin finite element scheme for time-space fractional diffusion equation
    Zhao, Zhengang
    Zheng, Yunying
    Guo, Peng
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (07) : 1212 - 1225
  • [10] A Compact Difference Scheme for Time-Space Fractional Nonlinear Diffusion-Wave Equations with Initial Singularity
    Elmahdi, Emadidin Gahalla Mohmed
    Arshad, Sadia
    Huang, Jianfei
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2023,