A Fourth Order Finite Difference Method for Time-Space Fractional Diffusion Equations

被引:3
|
作者
Arshad, Sadia [1 ,4 ]
Baleanu, Dumitru [2 ,6 ,7 ]
Huang, Jianfei [3 ]
Tang, Yifa [4 ,5 ]
Zhao, Yue [4 ,5 ]
机构
[1] COMSATS Univ Islamabad, Lahore, Pakistan
[2] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[3] Yangzhou Univ, Coll Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[6] Inst Space Sci, Magurele 077125, Romania
[7] Tshwane Univ Technol, Fac Sci, Dept Math & Stat, Arcadia Campus,Bldg 2-117,Nelson Mandela Dr, ZA-0001 Pretoria, South Africa
基金
中国国家自然科学基金;
关键词
Fractional diffusion equation; Riesz derivative; high-order approximation; stability; convergence; IMPLICIT NUMERICAL-METHOD; HIGH-ORDER APPROXIMATION; SPECTRAL METHOD; CAPUTO DERIVATIVES; SCHEME; CONVERGENCE;
D O I
10.4208/eajam.280218.210518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite difference method for a class of time-space fractional diffusion equations is considered. The trapezoidal formula and a fourth-order fractional compact difference scheme are, respectively, used in temporal and spatial discretisations and the method stability is studied. Theoretical estimates of the convergence in the L-2 -norm are shown to be O(tau(2) + h(4)), where tau and h are time and space mesh sizes. Numerical examples confirm theoretical results.
引用
收藏
页码:764 / 781
页数:18
相关论文
共 50 条
  • [1] Fourth order finite difference schemes for time-space fractional sub-diffusion equations
    Pang, Hong-Kui
    Sun, Hai-Wei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (06) : 1287 - 1302
  • [2] Finite difference method for time-space linear and nonlinear fractional diffusion equations
    Arshad, Sadia
    Bu, Weiping
    Huang, Jianfei
    Tang, Yifa
    Zhao, Yue
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (01) : 202 - 217
  • [3] Finite difference scheme for the time-space fractional diffusion equations
    Cao, Jianxiong
    Li, Changpin
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1440 - 1456
  • [4] Finite Difference Method for Time-Space Fractional Advection-Diffusion Equations with Riesz Derivative
    Arshad, Sadia
    Baleanu, Dumitru
    Huang, Jianfei
    Al Qurashi, Maysaa Mohamed
    Tang, Yifa
    Zhao, Yue
    ENTROPY, 2018, 20 (05)
  • [5] A unified difference-spectral method for time-space fractional diffusion equations
    Huang, Jianfei
    Yang, Dandan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (06) : 1172 - 1184
  • [6] High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives
    Vong, Seakweng
    Lyu, Pin
    Chen, Xu
    Lei, Siu-Long
    NUMERICAL ALGORITHMS, 2016, 72 (01) : 195 - 210
  • [7] High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives
    Seakweng Vong
    Pin Lyu
    Xu Chen
    Siu-Long Lei
    Numerical Algorithms, 2016, 72 : 195 - 210
  • [8] A second order finite difference-spectral method for space fractional diffusion equations
    JianFei Huang
    NingMing Nie
    YiFa Tang
    Science China Mathematics, 2014, 57 : 1303 - 1317
  • [9] A second order finite difference-spectral method for space fractional diffusion equations
    HUANG JianFei
    NIE NingMing
    TANG YiFa
    Science China Mathematics, 2014, 57 (06) : 1303 - 1317
  • [10] A second order finite difference-spectral method for space fractional diffusion equations
    Huang JianFei
    Nie NingMing
    Tang YiFa
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (06) : 1303 - 1317