A Fourth Order Finite Difference Method for Time-Space Fractional Diffusion Equations

被引:3
|
作者
Arshad, Sadia [1 ,4 ]
Baleanu, Dumitru [2 ,6 ,7 ]
Huang, Jianfei [3 ]
Tang, Yifa [4 ,5 ]
Zhao, Yue [4 ,5 ]
机构
[1] COMSATS Univ Islamabad, Lahore, Pakistan
[2] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[3] Yangzhou Univ, Coll Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[6] Inst Space Sci, Magurele 077125, Romania
[7] Tshwane Univ Technol, Fac Sci, Dept Math & Stat, Arcadia Campus,Bldg 2-117,Nelson Mandela Dr, ZA-0001 Pretoria, South Africa
基金
中国国家自然科学基金;
关键词
Fractional diffusion equation; Riesz derivative; high-order approximation; stability; convergence; IMPLICIT NUMERICAL-METHOD; HIGH-ORDER APPROXIMATION; SPECTRAL METHOD; CAPUTO DERIVATIVES; SCHEME; CONVERGENCE;
D O I
10.4208/eajam.280218.210518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite difference method for a class of time-space fractional diffusion equations is considered. The trapezoidal formula and a fourth-order fractional compact difference scheme are, respectively, used in temporal and spatial discretisations and the method stability is studied. Theoretical estimates of the convergence in the L-2 -norm are shown to be O(tau(2) + h(4)), where tau and h are time and space mesh sizes. Numerical examples confirm theoretical results.
引用
收藏
页码:764 / 781
页数:18
相关论文
共 50 条
  • [41] Efficient difference method for time-space fractional diffusion equation with Robin fractional derivative boundary condition
    Zhang, Biao
    Bu, Weiping
    Xiao, Aiguo
    NUMERICAL ALGORITHMS, 2021, 88 (04) : 1965 - 1988
  • [42] Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations
    Bu, Weiping
    Xiao, Aiguo
    Zeng, Wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (01) : 422 - 441
  • [43] Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations
    Weiping Bu
    Aiguo Xiao
    Wei Zeng
    Journal of Scientific Computing, 2017, 72 : 422 - 441
  • [44] Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation
    Xian-Ming Gu
    Ting-Zhu Huang
    Cui-Cui Ji
    Bruno Carpentieri
    Anatoly A. Alikhanov
    Journal of Scientific Computing, 2017, 72 : 957 - 985
  • [45] A Banded Preconditioning Iteration Method for Time-Space Fractional Advection-Diffusion Equations
    Zeng, Min-Li
    Zhang, Guo-Feng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [46] Numerical method for solving fractional convection diffusion equations with time-space variable coefficients
    Zhong, Guo
    Yi, Mingxu
    Huang, Jun
    IAENG International Journal of Applied Mathematics, 2018, 48 (01) : 62 - 66
  • [47] Space-time finite element method for the distributed-order time fractional reaction diffusion equations
    Bu, Weiping
    Ji, Lun
    Tang, Yifa
    Zhou, Jie
    APPLIED NUMERICAL MATHEMATICS, 2020, 152 : 446 - 465
  • [48] Finite difference/spectral-Galerkin method for a two-dimensional distributed-order time-space fractional reaction-diffusion equation
    Guo, Shimin
    Mei, Liquan
    Zhang, Zhengqiang
    Jiang, Yutao
    APPLIED MATHEMATICS LETTERS, 2018, 85 : 157 - 163
  • [49] A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations
    Djennadi, Smina
    Shawagfeh, Nabil
    Abu Arqub, Omar
    CHAOS SOLITONS & FRACTALS, 2021, 150
  • [50] Difference numerical solutions for time-space fractional advection diffusion equation
    Zhang, Fangfang
    Gao, Xiaoyang
    Xie, Zhaokun
    BOUNDARY VALUE PROBLEMS, 2019,