Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations

被引:0
|
作者
Jianyu Pan
Michael Ng
Hong Wang
机构
[1] Hong Kong Baptist University,Department of Mathematics
[2] East China Normal University,Department of Mathematics, Shanghai Key Laboratory of PMMP
[3] University of South Carolina,Department of Mathematics
来源
Numerical Algorithms | 2017年 / 74卷
关键词
Iterative methods; Preconditioning; Space-fractional diffusion equations; Finite volume methods;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the preconditioned Krylov subspace method for linear systems arising from the finite volume discretization method of steady-state variable-coefficient conservative space-fractional diffusion equations. We propose to use a scaled-circulant preconditioner to deal with such Toeplitz-like discretization matrices. We show that the difference between the scaled-circulant preconditioner and the coefficient matrix is equal to the sum of a small-norm matrix and a low-rank matrix. Numerical tests are conducted to show the effectiveness of the proposed method for one- and two-dimensional steady-state space-fractional diffusion equations and demonstrate that the preconditioned Krylov subspace method converges very quickly.
引用
收藏
页码:153 / 173
页数:20
相关论文
共 50 条
  • [1] Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations
    Pan, Jianyu
    Ng, Michael
    Wang, Hong
    [J]. NUMERICAL ALGORITHMS, 2017, 74 (01) : 153 - 173
  • [2] A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations
    Wang, Hong
    Du, Ning
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 240 : 49 - 57
  • [3] FAST FINITE VOLUME METHODS FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Wang, Hong
    Cheng, Aijie
    Wang, Kaixin
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (05): : 1427 - 1441
  • [4] Preconditioned Iterative Methods for Two-Dimensional Space-Fractional Diffusion Equations
    Jin, Xiao-Qing
    Lin, Fu-Rong
    Zhao, Zhi
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 18 (02) : 469 - 488
  • [5] A PRECONDITIONED FAST HERMITE FINITE ELEMENT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Zhao, Meng
    Cheng, Aijie
    Wang, Hong
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (09): : 3529 - 3545
  • [6] Fast modified scaled HSS preconditioner for steady-state space-fractional diffusion equations
    Lu, Kang-Ya
    Miao, Cun-Qiang
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 101
  • [7] Fast and improved scaled HSS preconditioner for steady-state space-fractional diffusion equations
    Chen, Fang
    Li, Tian-Yi
    [J]. NUMERICAL ALGORITHMS, 2021, 87 (02) : 651 - 665
  • [8] Fast and improved scaled HSS preconditioner for steady-state space-fractional diffusion equations
    Fang Chen
    Tian-Yi Li
    [J]. Numerical Algorithms, 2021, 87 : 651 - 665
  • [9] A preconditioned fast finite difference scheme for space-fractional diffusion equations in convex domains
    Du, Ning
    Sun, Hai-Wei
    Wang, Hong
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (01):
  • [10] A preconditioned fast finite difference scheme for space-fractional diffusion equations in convex domains
    Ning Du
    Hai-Wei Sun
    Hong Wang
    [J]. Computational and Applied Mathematics, 2019, 38