Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations

被引:0
|
作者
Jianyu Pan
Michael Ng
Hong Wang
机构
[1] Hong Kong Baptist University,Department of Mathematics
[2] East China Normal University,Department of Mathematics, Shanghai Key Laboratory of PMMP
[3] University of South Carolina,Department of Mathematics
来源
Numerical Algorithms | 2017年 / 74卷
关键词
Iterative methods; Preconditioning; Space-fractional diffusion equations; Finite volume methods;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the preconditioned Krylov subspace method for linear systems arising from the finite volume discretization method of steady-state variable-coefficient conservative space-fractional diffusion equations. We propose to use a scaled-circulant preconditioner to deal with such Toeplitz-like discretization matrices. We show that the difference between the scaled-circulant preconditioner and the coefficient matrix is equal to the sum of a small-norm matrix and a low-rank matrix. Numerical tests are conducted to show the effectiveness of the proposed method for one- and two-dimensional steady-state space-fractional diffusion equations and demonstrate that the preconditioned Krylov subspace method converges very quickly.
引用
收藏
页码:153 / 173
页数:20
相关论文
共 50 条
  • [41] IMPLEMENTATION OF THE HALF-SWEEP AOR ITERATIVE ALGORITHM FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Sunarto, Andang
    Sulaiman, Jumat
    Saudi, Azali
    [J]. JURNAL TEKNOLOGI, 2016, 78 (6-4): : 7 - 12
  • [42] Generalized finite difference method for a class of multidimensional space-fractional diffusion equations
    Hong Guang Sun
    Zhaoyang Wang
    Jiayi Nie
    Yong Zhang
    Rui Xiao
    [J]. Computational Mechanics, 2021, 67 : 17 - 32
  • [43] Generalized finite difference method for a class of multidimensional space-fractional diffusion equations
    Sun, Hong Guang
    Wang, Zhaoyang
    Nie, Jiayi
    Zhang, Yong
    Xiao, Rui
    [J]. COMPUTATIONAL MECHANICS, 2021, 67 (01) : 17 - 32
  • [44] A fast preconditioning iterative method for solving the discretized second-order space-fractional advection-diffusion equations
    Tang, Shi-Ping
    Huang, Yu-Mei
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 438
  • [45] Source Term Discretization Effects on the Steady-State Accuracy of Finite Volume Schemes
    Jonathan Thorne
    Aaron Katz
    [J]. Journal of Scientific Computing, 2016, 69 : 146 - 169
  • [46] Source Term Discretization Effects on the Steady-State Accuracy of Finite Volume Schemes
    Thorne, Jonathan
    Katz, Aaron
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 69 (01) : 146 - 169
  • [47] An efficient multigrid method with preconditioned smoother for two-dimensional anisotropic space-fractional diffusion equations
    Xu, Yuan
    Lei, Siu-Long
    Sun, Hai-Wei
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 124 (218-226) : 218 - 226
  • [48] Spectral Galerkin Methods for Riesz Space-Fractional Convection-Diffusion Equations
    Zhang, Xinxia
    Wang, Jihan
    Wu, Zhongshu
    Tang, Zheyi
    Zeng, Xiaoyan
    [J]. FRACTAL AND FRACTIONAL, 2024, 8 (07)
  • [49] θ schemes for finite element discretization of the space-time fractional diffusion equations
    Guan, Qingguang
    Gunzburger, Max
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 288 : 264 - 273
  • [50] Efficient numerical methods for Riesz space-fractional diffusion equations with fractional Neumann boundary conditions
    Xie, Changping
    Fang, Shaomei
    [J]. APPLIED NUMERICAL MATHEMATICS, 2022, 176 : 1 - 18