A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations

被引:96
|
作者
Wang, Hong [1 ,2 ]
Du, Ning [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Circulant matrices; Conjugate gradient squared method for dense matrices; Dense matrix preconditioners; Steady-state space-fractional diffusion equations; Toeplitz matrices; FINITE-DIFFERENCE APPROXIMATIONS; TOEPLITZ;
D O I
10.1016/j.jcp.2012.07.045
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Fractional diffusion equations model phenomena exhibiting anomalous diffusion that cannot be modeled accurately by the classical second-order diffusion equations. Because of the nonlocal property of fractional differential operators, the corresponding numerical methods have full coefficient matrices which require storage of O(N-2) and computational cost of O(N-3) for a problem of size N. We develop a superfast-preconditioned conjugate gradient squared method for the efficient solution of steady-state space-fractional diffusion equations. The method reduces the computational work from O(N-2) to O(N log N) per iteration and reduces the memory requirement from O(N-2) to O(N). Furthermore, the method significantly reduces the number of iterations to be mesh size independent. Preliminary numerical experiments for a one-dimensional steady-state diffusion equation with 213 nodes show that the fast method reduces the overall CPU time from 3 h and 27 min for the Gaussian elimination to 0.39 s for the fast method while retaining the accuracy of Gaussian elimination. In contrast, the regular conjugate gradient squared method diverges after 2 days of simulations and more than 20,000 iterations. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:49 / 57
页数:9
相关论文
共 50 条
  • [1] Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations
    Jianyu Pan
    Michael Ng
    Hong Wang
    [J]. Numerical Algorithms, 2017, 74 : 153 - 173
  • [2] Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations
    Pan, Jianyu
    Ng, Michael
    Wang, Hong
    [J]. NUMERICAL ALGORITHMS, 2017, 74 (01) : 153 - 173
  • [3] Lopsided scaled HSS preconditioner for steady-state space-fractional diffusion equations
    Chen, Fang
    Li, Tian-Yi
    Muratova, Galina, V
    [J]. CALCOLO, 2021, 58 (02)
  • [4] Lopsided scaled HSS preconditioner for steady-state space-fractional diffusion equations
    Fang Chen
    Tian-Yi Li
    Galina V. Muratova
    [J]. Calcolo, 2021, 58
  • [5] Preconditioned Iterative Methods for Two-Dimensional Space-Fractional Diffusion Equations
    Jin, Xiao-Qing
    Lin, Fu-Rong
    Zhao, Zhi
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 18 (02) : 469 - 488
  • [6] Fast modified scaled HSS preconditioner for steady-state space-fractional diffusion equations
    Lu, Kang-Ya
    Miao, Cun-Qiang
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 101
  • [7] Fast and improved scaled HSS preconditioner for steady-state space-fractional diffusion equations
    Chen, Fang
    Li, Tian-Yi
    [J]. NUMERICAL ALGORITHMS, 2021, 87 (02) : 651 - 665
  • [8] Fast and improved scaled HSS preconditioner for steady-state space-fractional diffusion equations
    Fang Chen
    Tian-Yi Li
    [J]. Numerical Algorithms, 2021, 87 : 651 - 665
  • [9] Differential Quadrature and Cubature Methods for Steady-State Space-Fractional Advection-Diffusion Equations
    Pang, Guofei
    Chen, Wen
    Sze, K. Y.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 97 (04): : 299 - 322
  • [10] A PRECONDITIONED FAST HERMITE FINITE ELEMENT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Zhao, Meng
    Cheng, Aijie
    Wang, Hong
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (09): : 3529 - 3545