Fast solution methods for space-fractional diffusion equations

被引:42
|
作者
Wang, Hong [1 ,2 ]
Du, Ning [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Fractional diffusion equation; Toeplitz matrix; Levinson method; Superfast method; Fast Fourier transform; FINITE-DIFFERENCE APPROXIMATIONS; SUPERFAST SOLUTION; DISPERSION; ALGORITHM;
D O I
10.1016/j.cam.2013.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop fast solution methods for a shifted Grunwald finite difference method for steady-state and time-dependent space-fractional diffusion equations. These methods reduce the memory requirement of the finite difference scheme from O(N-2) to O(N) and the computational complexity from O(N-3) to O(N log(2) N). Preliminary numerical example runs show the utility of these methods over the traditional direct solvers of the finite difference methods, in terms of computational cost and memory requirements. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:376 / 383
页数:8
相关论文
共 50 条
  • [1] FAST FINITE VOLUME METHODS FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Wang, Hong
    Cheng, Aijie
    Wang, Kaixin
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (05): : 1427 - 1441
  • [2] Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions
    Jia, Jinhong
    Wang, Hong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 359 - 369
  • [3] Fast algorithms for high-order numerical methods for space-fractional diffusion equations
    Lei, Siu-Long
    Huang, Yun-Chi
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (05) : 1062 - 1078
  • [4] A fast method for variable-order space-fractional diffusion equations
    Jia, Jinhong
    Zheng, Xiangcheng
    Fu, Hongfei
    Dai, Pingfei
    Wang, Hong
    [J]. NUMERICAL ALGORITHMS, 2020, 85 (04) : 1519 - 1540
  • [5] A fast method for variable-order space-fractional diffusion equations
    Jinhong Jia
    Xiangcheng Zheng
    Hongfei Fu
    Pingfei Dai
    Hong Wang
    [J]. Numerical Algorithms, 2020, 85 : 1519 - 1540
  • [6] Numerical simulation for the space-fractional diffusion equations
    Kheybari, Samad
    Darvishi, Mohammad Taghi
    Hashemi, Mir Sajjad
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 348 : 57 - 69
  • [7] Particle simulation of space-fractional diffusion equations
    Lucchesi, M.
    Allouch, S.
    Le Maitre, O. P.
    Mustapha, K. A.
    Knio, O. M.
    [J]. COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (03) : 491 - 507
  • [8] Multidimensional solutions of space-fractional diffusion equations
    Hanyga, A
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2016): : 2993 - 3005
  • [9] A PRECONDITIONED FAST HERMITE FINITE ELEMENT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Zhao, Meng
    Cheng, Aijie
    Wang, Hong
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (09): : 3529 - 3545
  • [10] Global solution of space-fractional diffusion equations with nonlinear reaction source terms
    Trong, Dang Duc
    Dien, Nguyen Minh
    Viet, Tran Quoc
    [J]. APPLICABLE ANALYSIS, 2020, 99 (15) : 2707 - 2737