BAYESIAN ESTIMATION OF GAUSSIAN CONDITIONAL RANDOM FIELDS

被引:0
|
作者
Gan, Lingrui [1 ]
Narisetty, Naveen [1 ]
Liang, Feng [1 ]
机构
[1] Univ Illinois, Dept Stat, Urbana, IL 61801 USA
关键词
Bayesian regularization; Gaussian conditional random field; graphical models; spike and slab Lasso prior; VARIABLE SELECTION; GRAPHICAL MODEL; COVARIANCE ESTIMATION; REGRESSION; SPIKE; REGULARIZATION; LIKELIHOOD;
D O I
10.5705/ss.202020.0118
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a novel methodology based on a Bayesian Gaussian conditional random field model for elegantly learning the conditional dependence structures among multiple outcomes, and between the outcomes and a set of covariates simultaneously. Our approach is based on a Bayesian hierarchical model using a spike and slab Lasso prior. We investigate the corresponding maximum a posteriori (MAP) estimator that requires dealing with a nonconvex optimization problem. In spite of the nonconvexity, we establish the statistical accuracy for all points in the high posterior region, including the MAP estimator, and propose an efficient EM algorithm for the computation. Using simulation studies and a real application, we demonstrate the competitive performance of our method for the purpose of learning the dependence structure.
引用
收藏
页码:131 / 152
页数:22
相关论文
共 50 条
  • [41] Covariance tapering for multivariate Gaussian random fields estimation
    Bevilacqua, M.
    Fasso, A.
    Gaetan, C.
    Porcu, E.
    Velandia, D.
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2016, 25 (01): : 21 - 37
  • [42] On estimation of the mean and covariance parameter for Gaussian random fields
    Ibarrola, P
    Rozanski, R
    Velez, R
    [J]. STATISTICS, 1998, 31 (01) : 1 - 20
  • [43] Covariance tapering for multivariate Gaussian random fields estimation
    M. Bevilacqua
    A. Fassò
    C. Gaetan
    E. Porcu
    D. Velandia
    [J]. Statistical Methods & Applications, 2016, 25 : 21 - 37
  • [44] Calibration of conditional composite likelihood for Bayesian inference on Gibbs random fields
    Stoehr, Julien
    Friel, Nial
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 921 - 929
  • [45] The Connection Between Bayesian Estimation of a Gaussian Random Field and RKHS
    Aravkin, Aleksandr Y.
    Bell, Bradley M.
    Burke, James V.
    Pillonetto, Gianluigi
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (07) : 1518 - 1524
  • [46] Estimation of trend and random components of conditional random field using Gaussian process regression
    Yoshida, Ikumasa
    Tomizawa, Yukihisa
    Otake, Yu
    [J]. COMPUTERS AND GEOTECHNICS, 2021, 136
  • [47] Neural Conditional Ordinal Random Fields for Agreement Level Estimation
    Rakicevic, Nemanja
    Rudovic, Ognjen
    Petridis, Stavros
    Pantic, Maja
    [J]. 2015 INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII), 2015, : 885 - 890
  • [48] Minimum Conditional Description Length Estimation for Markov Random Fields
    Reyes, Matthew G.
    Neuhoff, David L.
    [J]. 2016 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2016,
  • [49] FULLY BAYESIAN FIELD SLAM USING GAUSSIAN MARKOV RANDOM FIELDS
    Do, Huan N.
    Jadaliha, Mahdi
    Temel, Mehmet
    Choi, Jongeun
    [J]. ASIAN JOURNAL OF CONTROL, 2016, 18 (04) : 1175 - 1188
  • [50] Bayesian inference and prediction of Gaussian random fields based on censored data
    De Oliveira, V
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (01) : 95 - 115