Covariance tapering for multivariate Gaussian random fields estimation

被引:0
|
作者
M. Bevilacqua
A. Fassò
C. Gaetan
E. Porcu
D. Velandia
机构
[1] Universidad de Valparaíso,Instituto de Estadística
[2] Universitá degli Studi di Bergamo,Dipartimento di Ingegneria
[3] DAIS,Departamento de Matemática
[4] Universitá Cá Foscari-Venezia,undefined
[5] Universidad Técnica Federico Santa María,undefined
来源
关键词
Cross Covariance estimation; Large datasets; Multivariate compactly supported correlation function; Multivariate Gaussian process;
D O I
暂无
中图分类号
学科分类号
摘要
In recent literature there has been a growing interest in the construction of covariance models for multivariate Gaussian random fields. However, effective estimation methods for these models are somehow unexplored. The maximum likelihood method has attractive features, but when we deal with large data sets this solution becomes impractical, so computationally efficient solutions have to be devised. In this paper we explore the use of the covariance tapering method for the estimation of multivariate covariance models. In particular, through a simulation study, we compare the use of simple separable tapers with more flexible multivariate tapers recently proposed in the literature and we discuss the asymptotic properties of the method under increasing domain asymptotics.
引用
收藏
页码:21 / 37
页数:16
相关论文
共 50 条
  • [1] Covariance tapering for multivariate Gaussian random fields estimation
    Bevilacqua, M.
    Fasso, A.
    Gaetan, C.
    Porcu, E.
    Velandia, D.
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2016, 25 (01): : 21 - 37
  • [2] On estimation of the mean and covariance parameter for Gaussian random fields
    Ibarrola, P
    Rozanski, R
    Velez, R
    [J]. STATISTICS, 1998, 31 (01) : 1 - 20
  • [3] Estimating covariance functions of multivariate skew-Gaussian random fields on the sphere
    Alegria, A.
    Caro, S.
    Bevilacqua, M.
    Porcu, E.
    Clarke, J.
    [J]. SPATIAL STATISTICS, 2017, 22 : 388 - 402
  • [4] Bayesian estimation of multivariate Gaussian Markov random fields with constraint
    MacNab, Ying C.
    [J]. STATISTICS IN MEDICINE, 2020, 39 (30) : 4767 - 4788
  • [5] Semiparametric estimation of cross-covariance functions for multivariate random fields
    Qadir, Ghulam A.
    Sun, Ying
    [J]. BIOMETRICS, 2021, 77 (02) : 547 - 560
  • [6] Multilevel approximation of Gaussian random fields: Covariance compression, estimation, and spatial prediction
    Harbrecht, Helmut
    Herrmann, Lukas
    Kirchner, Kristin
    Schwab, Christoph
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (05)
  • [7] Testing the covariance structure of multivariate random fields
    Li, Bo
    Genton, Marc G.
    Sherman, Michael
    [J]. BIOMETRIKA, 2008, 95 (04) : 813 - 829
  • [9] Asymptotic covariance estimation by Gaussian random perturbation
    Zhou, Jing
    Lan, Wei
    Wang, Hansheng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 171
  • [10] On fixed-domain asymptotics and covariance tapering in Gaussian random field models
    Wang, Daqing
    Loh, Wei-Liem
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 238 - 269