Estimating covariance functions of multivariate skew-Gaussian random fields on the sphere

被引:11
|
作者
Alegria, A. [1 ]
Caro, S. [2 ]
Bevilacqua, M. [3 ]
Porcu, E. [1 ]
Clarke, J. [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
[2] Univ Santiago, Dept Matemat & Computac, Santiago, Chile
[3] Univ Valparaiso, Inst Estadist, Valparaiso, Chile
关键词
Composite likelihood; Geodesic distance; Global data; COMPOSITE LIKELIHOOD APPROACH; VECTOR RANDOM-FIELDS; MAX-STABLE PROCESSES; PAIRWISE LIKELIHOOD; BAYESIAN PREDICTION; SPATIAL DATA; DATA SETS; TIME; INFERENCE; SPACE;
D O I
10.1016/j.spasta.2017.07.009
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper considers a multivariate spatial random field, with each component having univariate marginal distributions of the skewGaussian type. We assume that the field is defined spatially on the unit sphere embedded in R-3, allowing for modeling data available over large portions of planet Earth. This model admits explicit expressions for the marginal and cross covariances. However, the n-dimensional distributions of the field are difficult to evaluate, because it requires the sum of 2n terms involving the cumulative and probability density functions of a n-dimensional Gaussian distribution. Since in this case inference based on the full likelihood is computationally unfeasible, we propose a composite likelihood approach based on pairs of spatial observations. This last being possible thanks to the fact that we have a closed form expression for the bivariate distribution. We illustrate the effectiveness of the method through simulation experiments and the analysis of a real data set of minimum and maximum surface air temperatures. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:388 / 402
页数:15
相关论文
共 50 条
  • [1] Skew-Gaussian random fields
    Rimstad, Kjartan
    Omre, Henning
    [J]. SPATIAL STATISTICS, 2014, 10 : 43 - 62
  • [2] Skew-Gaussian random field
    Alodat, M. T.
    Al-Rawwash, M. Y.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 232 (02) : 496 - 504
  • [3] A spatial skew-Gaussian process with a specified covariance function
    Khaledi, Majid Jafari
    Zareifard, Hamid
    Boojari, Hossein
    [J]. STATISTICS & PROBABILITY LETTERS, 2023, 192
  • [4] Covariance tapering for multivariate Gaussian random fields estimation
    Bevilacqua, M.
    Fasso, A.
    Gaetan, C.
    Porcu, E.
    Velandia, D.
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2016, 25 (01): : 21 - 37
  • [5] Covariance tapering for multivariate Gaussian random fields estimation
    M. Bevilacqua
    A. Fassò
    C. Gaetan
    E. Porcu
    D. Velandia
    [J]. Statistical Methods & Applications, 2016, 25 : 21 - 37
  • [6] On the existence of some skew-Gaussian random field models
    Mahmoudian, Behzad
    [J]. STATISTICS & PROBABILITY LETTERS, 2018, 137 : 331 - 335
  • [7] Fisher Information and Uncertainty Principle for Skew-Gaussian Random Variables
    Contreras-Reyes, Javier E.
    [J]. FLUCTUATION AND NOISE LETTERS, 2021, 20 (05):
  • [8] A New Construction of Covariance Functions for Gaussian Random Fields
    Wu, Weichao
    Micheas, Athanasios C.
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2024, 86 (01): : 530 - 574
  • [9] A New Construction of Covariance Functions for Gaussian Random Fields
    Weichao Wu
    Athanasios C. Micheas
    [J]. Sankhya A, 2024, 86 : 530 - 574
  • [10] Matern Cross-Covariance Functions for Multivariate Random Fields
    Gneiting, Tilmann
    Kleiber, William
    Schlather, Martin
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) : 1167 - 1177