Fisher Information and Uncertainty Principle for Skew-Gaussian Random Variables

被引:24
|
作者
Contreras-Reyes, Javier E. [1 ]
机构
[1] Univ Valparaiso, Fac Ciencias, Inst Estadist, Valparaiso, Chile
来源
FLUCTUATION AND NOISE LETTERS | 2021年 / 20卷 / 05期
关键词
Skew-Gaussian distribution; Fisher information; uncertainty principle; Shannon entropy; Fisher-Shannon plane; condition factor index; RENYI ENTROPY; DISTRIBUTIONS;
D O I
10.1142/S0219477521500395
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fisher information is a measure to quantify information and estimate system-defining parameters. The scaling and uncertainty properties of this measure, linked with Shannon entropy, are useful to characterize signals through the Fisher-Shannon plane. In addition, several non-gaussian distributions have been exemplified, given that assuming gaussianity in evolving systems is unrealistic, and the derivation of distributions that addressed asymmetry and heavy-tails is more suitable. The latter has motivated studying Fisher information and the uncertainty principle for skew-gaussian random variables for this paper. We describe the skew-gaussian distribution effect on uncertainty principle, from which the Fisher information, the Shannon entropy power, and the Fisher divergence are derived. Results indicate that flexibility of skew-gaussian distribution with a shape parameter allows deriving explicit expressions of these measures and define a new Fisher-Shannon information plane. Performance of the proposed methodology is illustrated by numerical results and applications to condition factor time series.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Skew-Gaussian random field
    Alodat, M. T.
    Al-Rawwash, M. Y.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 232 (02) : 496 - 504
  • [2] Skew-Gaussian random fields
    Rimstad, Kjartan
    Omre, Henning
    [J]. SPATIAL STATISTICS, 2014, 10 : 43 - 62
  • [3] On the existence of some skew-Gaussian random field models
    Mahmoudian, Behzad
    [J]. STATISTICS & PROBABILITY LETTERS, 2018, 137 : 331 - 335
  • [4] On spatial skew-Gaussian processes and applications
    Zhang, Hao
    El-Shaarawi, Abdel
    [J]. ENVIRONMETRICS, 2010, 21 (01) : 33 - 47
  • [5] Estimating covariance functions of multivariate skew-Gaussian random fields on the sphere
    Alegria, A.
    Caro, S.
    Bevilacqua, M.
    Porcu, E.
    Clarke, J.
    [J]. SPATIAL STATISTICS, 2017, 22 : 388 - 402
  • [6] Uncertainty principle and quantum Fisher information
    Paolo Gibilisco
    Tommaso Isola
    [J]. Annals of the Institute of Statistical Mathematics, 2007, 59 : 147 - 159
  • [7] Uncertainty principle and quantum Fisher information
    Gibilisco, Paolo
    Isola, Tommaso
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2007, 59 (01) : 147 - 159
  • [8] Uncertainty principle with quantum Fisher information
    Andai, Attila
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (01)
  • [9] Analyzing Fish Condition Factor Index Through Skew-Gaussian Information Theory Quantifiers
    Contreras-Reyes, Javier E.
    [J]. FLUCTUATION AND NOISE LETTERS, 2016, 15 (02):
  • [10] A spatial skew-Gaussian process with a specified covariance function
    Khaledi, Majid Jafari
    Zareifard, Hamid
    Boojari, Hossein
    [J]. STATISTICS & PROBABILITY LETTERS, 2023, 192