Estimating covariance functions of multivariate skew-Gaussian random fields on the sphere

被引:11
|
作者
Alegria, A. [1 ]
Caro, S. [2 ]
Bevilacqua, M. [3 ]
Porcu, E. [1 ]
Clarke, J. [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
[2] Univ Santiago, Dept Matemat & Computac, Santiago, Chile
[3] Univ Valparaiso, Inst Estadist, Valparaiso, Chile
关键词
Composite likelihood; Geodesic distance; Global data; COMPOSITE LIKELIHOOD APPROACH; VECTOR RANDOM-FIELDS; MAX-STABLE PROCESSES; PAIRWISE LIKELIHOOD; BAYESIAN PREDICTION; SPATIAL DATA; DATA SETS; TIME; INFERENCE; SPACE;
D O I
10.1016/j.spasta.2017.07.009
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper considers a multivariate spatial random field, with each component having univariate marginal distributions of the skewGaussian type. We assume that the field is defined spatially on the unit sphere embedded in R-3, allowing for modeling data available over large portions of planet Earth. This model admits explicit expressions for the marginal and cross covariances. However, the n-dimensional distributions of the field are difficult to evaluate, because it requires the sum of 2n terms involving the cumulative and probability density functions of a n-dimensional Gaussian distribution. Since in this case inference based on the full likelihood is computationally unfeasible, we propose a composite likelihood approach based on pairs of spatial observations. This last being possible thanks to the fact that we have a closed form expression for the bivariate distribution. We illustrate the effectiveness of the method through simulation experiments and the analysis of a real data set of minimum and maximum surface air temperatures. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:388 / 402
页数:15
相关论文
共 50 条
  • [31] MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY
    Gregori, Pablo
    Porcu, Emilio
    Mateu, Jorge
    [J]. IMAGE ANALYSIS & STEREOLOGY, 2014, 33 (01): : 75 - 81
  • [32] Spectral Simulation of Isotropic Gaussian Random Fields on a Sphere
    Christian Lantuéjoul
    Xavier Freulon
    Didier Renard
    [J]. Mathematical Geosciences, 2019, 51 : 999 - 1020
  • [33] Spectral Simulation of Isotropic Gaussian Random Fields on a Sphere
    Lantuejoul, Christian
    Freulon, Xavier
    Renard, Didier
    [J]. MATHEMATICAL GEOSCIENCES, 2019, 51 (08) : 999 - 1020
  • [34] Multilevel representations of isotropic Gaussian random fields on the sphere
    Bachmayr, Markus
    Djurdjevac, Ana
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (04) : 1970 - 2000
  • [35] Quadratic variations for Gaussian isotropic random fields on the sphere
    Shevchenko, Radomyra
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 2241 - 2262
  • [36] Fast generation of isotropic Gaussian random fields on the sphere
    Creasey, Peter E.
    Lang, Annika
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2018, 24 (01): : 1 - 11
  • [37] Composite Likelihood Inference for Multivariate Gaussian Random Fields
    Bevilacqua, Moreno
    Alegria, Alfredo
    Velandia, Daira
    Porcu, Emilio
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2016, 21 (03) : 448 - 469
  • [38] Composite Likelihood Inference for Multivariate Gaussian Random Fields
    Moreno Bevilacqua
    Alfredo Alegria
    Daira Velandia
    Emilio Porcu
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2016, 21 : 448 - 469
  • [39] On Information About Covariance Parameters in Gaussian Matern Random Fields
    De Oliveira, Victor
    Han, Zifei
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (04) : 690 - 712
  • [40] A Valid Matern Class of Cross-Covariance Functions for Multivariate Random Fields With Any Number of Components
    Apanasovich, Tatiyana V.
    Genton, Marc G.
    Sun, Ying
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (497) : 180 - 193