On Information About Covariance Parameters in Gaussian Matern Random Fields

被引:1
|
作者
De Oliveira, Victor [1 ]
Han, Zifei [2 ]
机构
[1] Univ Texas San Antonio, Dept Management Sci & Stat, San Antonio, TX USA
[2] Univ Int Business & Econ, Sch Stat, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
Fisher information; Geostatistics; Microergodic parameter; Sampling design; Smoothness parameter; SPATIAL SAMPLING DESIGN; ASYMPTOTIC OPTIMALITY; LINEAR PREDICTIONS; STATISTICS;
D O I
10.1007/s13253-022-00510-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Matern family of covariance functions is currently the most commonly used for the analysis of geostatistical data due to its ability to describe different smoothness behaviors. Yet, in many applications, the smoothness parameter is set at an arbitrary value. This practice is due partly to computational challenges faced when attempting to estimate all covariance parameters and partly to unqualified claims in the literature stating that geostatistical data have little or no information about the smoothness parameter. This work critically investigates this claim and shows it is not true in general. Specifically, it is shown that the information the data have about the correlation parameters varies substantially depending on the true model and sampling design and, in particular, the information about the smoothness parameter can be large, in some cases larger than the information about the range parameter. In light of these findings, we suggest to reassess the aforementioned practice and instead establish inferences from data-based estimates of both range and smoothness parameters, especially for strongly dependent non-smooth processes observed on irregular sampling designs. A data set of daily rainfall totals is used to motivate the discussion and gauge this common practice.
引用
收藏
页码:690 / 712
页数:23
相关论文
共 50 条
  • [1] On Information About Covariance Parameters in Gaussian Matérn Random Fields
    Victor De Oliveira
    Zifei Han
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 690 - 712
  • [2] Gaussian likelihood inference on data from trans-Gaussian random fields with Matern covariance function
    Yan, Yuan
    Genton, Marc G.
    [J]. ENVIRONMETRICS, 2018, 29 (5-6)
  • [3] ON FIXED-DOMAIN ASYMPTOTICS, PARAMETER ESTIMATION AND ISOTROPIC GAUSSIAN RANDOM FIELDS WITH MATERN COVARIANCE FUNCTIONS
    Loh, Wei-Liem
    Sun, Saifei
    Wen, Jun
    [J]. ANNALS OF STATISTICS, 2021, 49 (06): : 3127 - 3152
  • [4] Matern Cross-Covariance Functions for Multivariate Random Fields
    Gneiting, Tilmann
    Kleiber, William
    Schlather, Martin
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) : 1167 - 1177
  • [5] ON SOME MATERN COVARIANCE FUNCTIONS FOR SPATIO-TEMPORAL RANDOM FIELDS
    Ip, Ryan H. L.
    Li, W. K.
    [J]. STATISTICA SINICA, 2017, 27 (02) : 805 - 822
  • [6] The F-family of covariance functions: A Matern analogue for modeling random fields on spheres
    Alegria, A.
    Cuevas-Pacheco, F.
    Diggle, P.
    Porcu, E.
    [J]. SPATIAL STATISTICS, 2021, 43
  • [7] Matern cross-covariance functions for bivariate spatio-temporal random fields
    Ip, Ryan H. L.
    Li, W. K.
    [J]. SPATIAL STATISTICS, 2016, 17 : 22 - 37
  • [8] A New Construction of Covariance Functions for Gaussian Random Fields
    Wu, Weichao
    Micheas, Athanasios C.
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2024, 86 (01): : 530 - 574
  • [9] Testing the covariance function of stationary Gaussian random fields
    Taheriyoun, Ali Reza
    [J]. STATISTICS & PROBABILITY LETTERS, 2012, 82 (03) : 606 - 613
  • [10] Covariance tapering for multivariate Gaussian random fields estimation
    Bevilacqua, M.
    Fasso, A.
    Gaetan, C.
    Porcu, E.
    Velandia, D.
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2016, 25 (01): : 21 - 37