On Information About Covariance Parameters in Gaussian Matérn Random Fields

被引:0
|
作者
Victor De Oliveira
Zifei Han
机构
[1] The University of Texas at San Antonio,Department of Management Science and Statistics
[2] University of International Business and Economics, School of Statistics
关键词
Fisher information; Geostatistics; Microergodic parameter; Sampling design; Smoothness parameter;
D O I
暂无
中图分类号
学科分类号
摘要
The Matérn family of covariance functions is currently the most commonly used for the analysis of geostatistical data due to its ability to describe different smoothness behaviors. Yet, in many applications, the smoothness parameter is set at an arbitrary value. This practice is due partly to computational challenges faced when attempting to estimate all covariance parameters and partly to unqualified claims in the literature stating that geostatistical data have little or no information about the smoothness parameter. This work critically investigates this claim and shows it is not true in general. Specifically, it is shown that the information the data have about the correlation parameters varies substantially depending on the true model and sampling design and, in particular, the information about the smoothness parameter can be large, in some cases larger than the information about the range parameter. In light of these findings, we suggest to reassess the aforementioned practice and instead establish inferences from data-based estimates of both range and smoothness parameters, especially for strongly dependent non-smooth processes observed on irregular sampling designs. A data set of daily rainfall totals is used to motivate the discussion and gauge this common practice.
引用
收藏
页码:690 / 712
页数:22
相关论文
共 50 条
  • [1] On Information About Covariance Parameters in Gaussian Matern Random Fields
    De Oliveira, Victor
    Han, Zifei
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (04) : 690 - 712
  • [2] The circular Matérn covariance function and its link to Markov random fields on the circle
    Huang, Chunfeng
    Li, Ao
    Bussberg, Nicholas W.
    Zhang, Haimeng
    [J]. SPATIAL STATISTICS, 2024, 62
  • [3] Gaussian Whittle-Matérn fields on metric graphs
    Bolin, David
    Simas, Alexandre b.
    Wallin, Jonas
    [J]. BERNOULLI, 2024, 30 (02) : 1611 - 1639
  • [4] Smooth Matérn Gaussian random fields: Euler characteristic, expected number and height distribution of critical points
    Cheng, Dan
    [J]. STATISTICS & PROBABILITY LETTERS, 2024, 210
  • [5] Covariance tapering for multivariate Gaussian random fields estimation
    Bevilacqua, M.
    Fasso, A.
    Gaetan, C.
    Porcu, E.
    Velandia, D.
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2016, 25 (01): : 21 - 37
  • [6] Testing the covariance function of stationary Gaussian random fields
    Taheriyoun, Ali Reza
    [J]. STATISTICS & PROBABILITY LETTERS, 2012, 82 (03) : 606 - 613
  • [7] A New Construction of Covariance Functions for Gaussian Random Fields
    Wu, Weichao
    Micheas, Athanasios C.
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2024, 86 (01): : 530 - 574
  • [8] A New Construction of Covariance Functions for Gaussian Random Fields
    Weichao Wu
    Athanasios C. Micheas
    [J]. Sankhya A, 2024, 86 : 530 - 574
  • [9] Covariance tapering for multivariate Gaussian random fields estimation
    M. Bevilacqua
    A. Fassò
    C. Gaetan
    E. Porcu
    D. Velandia
    [J]. Statistical Methods & Applications, 2016, 25 : 21 - 37
  • [10] On estimation of the mean and covariance parameter for Gaussian random fields
    Ibarrola, P
    Rozanski, R
    Velez, R
    [J]. STATISTICS, 1998, 31 (01) : 1 - 20