On estimation of the mean and covariance parameter for Gaussian random fields

被引:0
|
作者
Ibarrola, P [2 ]
Rozanski, R
Velez, R
机构
[1] Wroclaw Univ Technol, Inst Math, PL-50370 Wroclaw, Poland
[2] Univ Complutense Madrid, Madrid, Spain
[3] Univ Nacl Educ Distancia, Madrid, Spain
关键词
Gaussian random fields; Bayesian estimation; regression models for spatial processes; invariance; stopping points; sequential estimation; covariance parameter estimation;
D O I
10.1080/02331889808802622
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the paper we consider the problem of estimation for a multivariate Gaussian random field whose vector mean depends linearly of a multidimensional parameter theta. A Bayesian estimator is derived and its distributions are analyzed under the assumption that the covariance Function is completely known. Further, an invariant structure is introduced and the optimal invariant terminal decision function obtained. Finally, assuming that the covariance function is known up to a parameter sigma(2) we estimate the parameters theta and sigma(2) and prove some of their properties. The results of Ibarrola and Velez (1990), (1992), for multidimensional stochastic processes are extended to the the present context and similar results are obtained.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] Covariance tapering for multivariate Gaussian random fields estimation
    Bevilacqua, M.
    Fasso, A.
    Gaetan, C.
    Porcu, E.
    Velandia, D.
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2016, 25 (01): : 21 - 37
  • [2] Covariance tapering for multivariate Gaussian random fields estimation
    M. Bevilacqua
    A. Fassò
    C. Gaetan
    E. Porcu
    D. Velandia
    [J]. Statistical Methods & Applications, 2016, 25 : 21 - 37
  • [3] ESTIMATION OF MEAN AND COVARIANCE OF GENERALIZED HOMOGENEOUS RANDOM FIELDS
    PONOMARENKO, OI
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1976, (03): : 212 - 214
  • [4] ON FIXED-DOMAIN ASYMPTOTICS, PARAMETER ESTIMATION AND ISOTROPIC GAUSSIAN RANDOM FIELDS WITH MATERN COVARIANCE FUNCTIONS
    Loh, Wei-Liem
    Sun, Saifei
    Wen, Jun
    [J]. ANNALS OF STATISTICS, 2021, 49 (06): : 3127 - 3152
  • [5] Multilevel approximation of Gaussian random fields: Covariance compression, estimation, and spatial prediction
    Harbrecht, Helmut
    Herrmann, Lukas
    Kirchner, Kristin
    Schwab, Christoph
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (05)
  • [6] Long correlation Gaussian random fields: Parameter estimation and noise reduction
    Caiafa, C. F.
    Proto, A. N.
    Kuruoglu, E. E.
    [J]. DIGITAL SIGNAL PROCESSING, 2007, 17 (04) : 819 - 835
  • [7] On the consistency of inversion-free parameter estimation for Gaussian random fields
    Keshavarz, Hossein
    Scott, Clayton
    XuanLong Nguyen
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 150 : 245 - 266
  • [8] Asymptotic covariance estimation by Gaussian random perturbation
    Zhou, Jing
    Lan, Wei
    Wang, Hansheng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 171
  • [9] A New Construction of Covariance Functions for Gaussian Random Fields
    Wu, Weichao
    Micheas, Athanasios C.
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2024, 86 (01): : 530 - 574
  • [10] Testing the covariance function of stationary Gaussian random fields
    Taheriyoun, Ali Reza
    [J]. STATISTICS & PROBABILITY LETTERS, 2012, 82 (03) : 606 - 613