Covariance tapering for multivariate Gaussian random fields estimation

被引:0
|
作者
M. Bevilacqua
A. Fassò
C. Gaetan
E. Porcu
D. Velandia
机构
[1] Universidad de Valparaíso,Instituto de Estadística
[2] Universitá degli Studi di Bergamo,Dipartimento di Ingegneria
[3] DAIS,Departamento de Matemática
[4] Universitá Cá Foscari-Venezia,undefined
[5] Universidad Técnica Federico Santa María,undefined
来源
关键词
Cross Covariance estimation; Large datasets; Multivariate compactly supported correlation function; Multivariate Gaussian process;
D O I
暂无
中图分类号
学科分类号
摘要
In recent literature there has been a growing interest in the construction of covariance models for multivariate Gaussian random fields. However, effective estimation methods for these models are somehow unexplored. The maximum likelihood method has attractive features, but when we deal with large data sets this solution becomes impractical, so computationally efficient solutions have to be devised. In this paper we explore the use of the covariance tapering method for the estimation of multivariate covariance models. In particular, through a simulation study, we compare the use of simple separable tapers with more flexible multivariate tapers recently proposed in the literature and we discuss the asymptotic properties of the method under increasing domain asymptotics.
引用
收藏
页码:21 / 37
页数:16
相关论文
共 50 条