Minimum Conditional Description Length Estimation for Markov Random Fields

被引:0
|
作者
Reyes, Matthew G. [1 ]
Neuhoff, David L. [1 ]
机构
[1] Univ Michigan, Dept EECS, Ann Arbor, MI 48109 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we discuss a method, which we call Minimum Conditional Description Length (MCDL), for estimating the parameters of a subset of sites within a Markov random field. We assume that the edges are known for the entire graph G = (V, E). Then, for a subset U.V, we estimate the parameters for nodes in U as well as for edges incident to a node in U, by finding the exponential parameter for that subset that yields the best compression conditioned on the values on the boundary. U. Our estimate is derived from a temporally stationary sequence of observations on the set U. We discuss how this method can also be applied to estimate a spatially invariant parameter from a single configuration, and in so doing, derive the Maximum Pseudo-Likelihood (MPL) estimate.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] DESCRIPTION OF MARKOV RANDOM FIELDS BY GIBBS CONDITIONAL DISTRIBUTION
    AVERINTSEV, MB
    [J]. TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1972, 17 (01): : 21 - +
  • [2] Minimum Conditional Description Length in Spatially Invariant Gibbs Fields
    Reyes, Matthew G.
    Neuhoff, David L.
    [J]. 2018 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2018,
  • [3] Conditional cyclic Markov random fields
    Kent, JT
    Mardia, KV
    Walder, AN
    [J]. ADVANCES IN APPLIED PROBABILITY, 1996, 28 (01) : 1 - 12
  • [4] Description of random fields by systems of conditional distributions
    Khachatryan, L. A.
    [J]. ARMENIAN JOURNAL OF MATHEMATICS, 2022, 14 (08): : 1 - 40
  • [5] Estimation for hidden Markov random fields
    Elliott, RJ
    Aggoun, L
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 50 (03) : 343 - 351
  • [6] CONTEXTUAL UNMIXING OF GEOSPATIAL DATA BASED ON MARKOV RANDOM FIELDS AND CONDITIONAL RANDOM FIELDS
    Nishii, Ryuei
    Ozaki, Tomohiko
    [J]. 2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 478 - +
  • [7] Motion Clustering and Estimation with Conditional Random Fields
    Tipaldi, Gian Diego
    Ramos, Fabio
    [J]. 2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, : 872 - 877
  • [8] BAYESIAN ESTIMATION OF GAUSSIAN CONDITIONAL RANDOM FIELDS
    Gan, Lingrui
    Narisetty, Naveen
    Liang, Feng
    [J]. STATISTICA SINICA, 2022, 32 (01) : 131 - 152
  • [9] Fingerspelling recognition with semi-Markov conditional random fields
    Kim, Taehwan
    Shakhnarovich, Greg
    Livescu, Karen
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1521 - 1528
  • [10] Semi-Markov Conditional Random Fields for sequence labeling
    He, Ming
    Du, Yongping
    [J]. Journal of Computational Information Systems, 2010, 6 (05): : 1637 - 1642