Minimum Conditional Description Length Estimation for Markov Random Fields

被引:0
|
作者
Reyes, Matthew G. [1 ]
Neuhoff, David L. [1 ]
机构
[1] Univ Michigan, Dept EECS, Ann Arbor, MI 48109 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we discuss a method, which we call Minimum Conditional Description Length (MCDL), for estimating the parameters of a subset of sites within a Markov random field. We assume that the edges are known for the entire graph G = (V, E). Then, for a subset U.V, we estimate the parameters for nodes in U as well as for edges incident to a node in U, by finding the exponential parameter for that subset that yields the best compression conditioned on the values on the boundary. U. Our estimate is derived from a temporally stationary sequence of observations on the set U. We discuss how this method can also be applied to estimate a spatially invariant parameter from a single configuration, and in so doing, derive the Maximum Pseudo-Likelihood (MPL) estimate.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Some links between conditional and coregionalized multivariate Gaussian Markov random fields
    Martinez-Beneito, Miguel A.
    [J]. SPATIAL STATISTICS, 2020, 40
  • [42] Use of Spatial Information via Markov and Conditional Random Fields in Histopathological Images
    Jamal, Sara Behjat
    Bilgin, Gokhan
    [J]. 2019 42ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2019, : 71 - 75
  • [43] A dense class of Markov random fields and associated parameter estimation
    Descombes, X
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 1997, 8 (03) : 299 - 316
  • [44] Maximum likelihood estimation of noisy Gaussian Markov random fields
    Coli, M
    Ippoliti, L
    [J]. ITI 2002: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2002, : 85 - 90
  • [45] Markov random fields and block matching for multiresolution motion estimation
    Leconge, R
    Laligant, O
    Truchetet, F
    [J]. HIGH-SPEED IMAGING AND SEQUENCE ANALYSIS II, 2000, 3968 : 10 - 21
  • [46] MARLEDA: Effective distribution estimation through Markov random fields
    Alden, Matthew
    Miikkulainen, Risto
    [J]. THEORETICAL COMPUTER SCIENCE, 2016, 633 : 4 - 18
  • [47] Motion estimation with Markov random fields by using a direct algorithm
    Kardouchi, M
    Dipanda, A
    Legrand, L
    [J]. NEW IMAGE PROCESSING TECHNIQUES AND APPLICATIONS: ALGORITHMS, METHODS, AND COMPONENTS II, 1997, 3101 : 95 - 103
  • [48] Cover Estimation and Payload Location using Markov Random Fields
    Quach, Tu-Thach
    [J]. MEDIA WATERMARKING, SECURITY, AND FORENSICS 2014, 2014, 9028
  • [49] Bayesian estimation of multivariate Gaussian Markov random fields with constraint
    MacNab, Ying C.
    [J]. STATISTICS IN MEDICINE, 2020, 39 (30) : 4767 - 4788
  • [50] Revisiting Boltzmann learning: Parameter estimation in Markov random fields
    Hansen, LK
    Andersen, LN
    Kjems, U
    Larsen, J
    [J]. 1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 3394 - 3397