Common values of a class of linear recurrences

被引:2
|
作者
Petho, Attila [1 ]
机构
[1] Univ Debrecen, Dept Comp Sci, POB 400, H-4002 Debrecen, Hungary
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2022年 / 33卷 / 06期
关键词
Linear recurrences; Baker?s method; S-UNITS; LOGARITHMS; NUMBERS;
D O I
10.1016/j.indag.2022.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (an), (bn) be linear recursive sequences of integers with characteristic polynomials A(X), B(X) is an element of Z[X] respectively. Assume that A(X) has a dominating and simple real root alpha, while B(X) has a pair of conjugate complex dominating and simple roots C, C over line . Assume further that alpha, C, alpha/C and C over line /C are not roots of unity and delta = log |C|/log |alpha| is an element of Q. Then there are effectively computable constants c0, c1 > 0 such that the inequality|an - bm| > |an|1-(c0 log2 n)/nholds for all n, m is an element of Z2 >= 0 with max{n, m} > c1. We present c0 explicitly.(c) 2022 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1172 / 1188
页数:17
相关论文
共 50 条
  • [31] Linear Recurrences via Probability
    Schmuland, Byron
    AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (04): : 386 - 389
  • [32] Positivity Certificates for Linear Recurrences
    Ibrahim, Alaa
    Salvy, Bruno
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 982 - 994
  • [33] ON LINEAR RECURRENCES AND DIVISIBILITY BY PRIMES
    SHALLIT, JO
    YAMRON, JP
    FIBONACCI QUARTERLY, 1984, 22 (04): : 366 - 368
  • [34] Linear Recurrences for Cylindrical Networks
    Galashin, Pavel
    Pylyavskyy, Pavlo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (13) : 4047 - 4080
  • [35] On the number of residues of linear recurrences
    Carlo Sanna
    Research in Number Theory, 2022, 8
  • [36] CONTINUED FRACTIONS AND LINEAR RECURRENCES
    LENSTRA, HW
    SHALLIT, JO
    MATHEMATICS OF COMPUTATION, 1993, 61 (203) : 351 - 354
  • [37] LINEAR RECURRENCES IN DIFFERENCE TRIANGLES
    LUCHINS, EH
    HENDEL, R
    LEMKE, P
    TULLER, D
    FIBONACCI QUARTERLY, 1995, 33 (05): : 441 - 452
  • [38] Linear recurrences as sums of squares
    Skalba, Mariusz
    ACTA ARITHMETICA, 2012, 155 (02) : 207 - 216
  • [39] Linear recurrences with polynomial coefficients
    Bronstein, M
    Solé, P
    JOURNAL OF COMPLEXITY, 2004, 20 (2-3) : 171 - 181
  • [40] CONTINUED FRACTIONS AND LINEAR RECURRENCES
    MILLS, WH
    MATHEMATICS OF COMPUTATION, 1975, 29 (129) : 173 - 180