Linear Recurrences for Cylindrical Networks

被引:0
|
作者
Galashin, Pavel [1 ]
Pylyavskyy, Pavlo [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Minnesota, Dept Math, Minneapolis, MN 55414 USA
关键词
VICIOUS WALKERS; YOUNG TABLEAUX; FRIENDLY WALKERS; PATHS; DETERMINANTS;
D O I
10.1093/imrn/rnx241
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a general theorem that gives a linear recurrence for tuples of paths in every cylindrical network. This can be seen as a cylindrical analog of the Lindstrom-Gessel-Viennot theorem. We illustrate the result by applying it to Schur functions, plane partitions, and domino tilings.
引用
收藏
页码:4047 / 4080
页数:34
相关论文
共 50 条
  • [1] On shortest linear recurrences
    Norton, GH
    JOURNAL OF SYMBOLIC COMPUTATION, 1999, 27 (03) : 325 - 349
  • [2] LINEAR RECURRENCES IN MODULES
    ELLIOTT, PDTA
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 : 1 - 4
  • [3] ON SOME LINEAR RECURRENCES
    da Silva, Joao Lita
    FIBONACCI QUARTERLY, 2020, 58 (01): : 73 - 79
  • [4] LINEAR VECTOR RECURRENCES
    MATTHYS, J
    PHILIPS RESEARCH REPORTS, 1976, 31 (02): : 120 - 128
  • [5] On solving linear recurrences
    Dobbs, David E.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2013, 44 (02) : 310 - 315
  • [6] Invariants for linear recurrences
    Caragiu, M
    Webb, W
    APPLICATIONS OF FIBONACCI NUMBERS, VOL 8, 1999, : 75 - 81
  • [7] Approximately linear recurrences
    Rasouli, Hossein
    Abbaszadeh, Sadegh
    Eshaghi, Madjid
    JOURNAL OF APPLIED ANALYSIS, 2018, 24 (01) : 81 - 85
  • [8] Monotonic linear recurrences
    Grcar, Joseph F.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 537 : 12 - 21
  • [9] Words and Linear Recurrences
    Janjic, Milan
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (01)
  • [10] On a family of linear recurrences
    Wilmott, C. M.
    IC-MSQUARE 2012: INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING IN PHYSICAL SCIENCES, 2013, 410