Linear Recurrences for Cylindrical Networks

被引:0
|
作者
Galashin, Pavel [1 ]
Pylyavskyy, Pavlo [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Minnesota, Dept Math, Minneapolis, MN 55414 USA
关键词
VICIOUS WALKERS; YOUNG TABLEAUX; FRIENDLY WALKERS; PATHS; DETERMINANTS;
D O I
10.1093/imrn/rnx241
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a general theorem that gives a linear recurrence for tuples of paths in every cylindrical network. This can be seen as a cylindrical analog of the Lindstrom-Gessel-Viennot theorem. We illustrate the result by applying it to Schur functions, plane partitions, and domino tilings.
引用
收藏
页码:4047 / 4080
页数:34
相关论文
共 50 条
  • [21] Linear recurrences as sums of squares
    Skalba, Mariusz
    ACTA ARITHMETICA, 2012, 155 (02) : 207 - 216
  • [22] Linear recurrences with polynomial coefficients
    Bronstein, M
    Solé, P
    JOURNAL OF COMPLEXITY, 2004, 20 (2-3) : 171 - 181
  • [23] CONTINUED FRACTIONS AND LINEAR RECURRENCES
    MILLS, WH
    MATHEMATICS OF COMPUTATION, 1975, 29 (129) : 173 - 180
  • [24] MULTIPLICITIES OF ALGEBRAIC LINEAR RECURRENCES
    SCHLICKEWEI, HP
    ACTA MATHEMATICA, 1993, 170 (02) : 151 - 180
  • [25] ON THE DETERMINATION OF PERIODS OF LINEAR RECURRENCES
    Fall, Oumar
    Diankha, Oumar
    Mignotte, Maurice
    Sanghare, Mamadou
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2012, 26 (02): : 159 - 172
  • [26] On the Solution of Linear Mean Recurrences
    Borwein, David
    Borwein, Jonathan M.
    Sims, Brailey
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (06): : 486 - 498
  • [27] RESURRECTING THE ASYMPTOTICS OF LINEAR RECURRENCES
    WIMP, J
    ZEILBERGER, D
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 111 (01) : 162 - 176
  • [28] On the numerical evaluation of linear recurrences
    Barrio, R
    Melendo, B
    Serrano, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 150 (01) : 71 - 86
  • [29] Linear recurrences and Chebyshev polynomials
    Kitaev, S
    Mansour, T
    FIBONACCI QUARTERLY, 2005, 43 (03): : 256 - 261
  • [30] Products of the terms of linear recurrences
    Kiss, P
    Mátyás, F
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2001, 37 (3-4) : 355 - 362