Common values of a class of linear recurrences

被引:2
|
作者
Petho, Attila [1 ]
机构
[1] Univ Debrecen, Dept Comp Sci, POB 400, H-4002 Debrecen, Hungary
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2022年 / 33卷 / 06期
关键词
Linear recurrences; Baker?s method; S-UNITS; LOGARITHMS; NUMBERS;
D O I
10.1016/j.indag.2022.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (an), (bn) be linear recursive sequences of integers with characteristic polynomials A(X), B(X) is an element of Z[X] respectively. Assume that A(X) has a dominating and simple real root alpha, while B(X) has a pair of conjugate complex dominating and simple roots C, C over line . Assume further that alpha, C, alpha/C and C over line /C are not roots of unity and delta = log |C|/log |alpha| is an element of Q. Then there are effectively computable constants c0, c1 > 0 such that the inequality|an - bm| > |an|1-(c0 log2 n)/nholds for all n, m is an element of Z2 >= 0 with max{n, m} > c1. We present c0 explicitly.(c) 2022 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1172 / 1188
页数:17
相关论文
共 50 条
  • [21] Monotonic linear recurrences
    Grcar, Joseph F.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 537 : 12 - 21
  • [22] Words and Linear Recurrences
    Janjic, Milan
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (01)
  • [23] On a family of linear recurrences
    Wilmott, C. M.
    IC-MSQUARE 2012: INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING IN PHYSICAL SCIENCES, 2013, 410
  • [24] Some linear recurrences
    不详
    AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (01): : 84 - 85
  • [25] Asymptotics of linear recurrences
    Wong, R.
    ANALYSIS AND APPLICATIONS, 2014, 12 (04) : 463 - 484
  • [26] The Combinatorialization of Linear Recurrences
    Benjamin, Arthur T.
    Derks, Halcyon
    Quinn, Jennifer J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (02):
  • [27] An undominated mechanism for a class of informed principal problems with common values
    Balkenborg, Dieter
    Makris, Miltiadis
    JOURNAL OF ECONOMIC THEORY, 2015, 157 : 918 - 958
  • [28] Note on a result of I. Nemes and A. Petho concerning polynomial values in linear recurrences
    Kiss, P
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (3-4): : 451 - 455
  • [29] ON A CLASS OF SOLVABLE RECURRENCES WITH PRIMES
    Caragiu, Mihai
    Zaharescu, Alexandru
    Zaki, Mohammad
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2012, 26 (02): : 197 - 208
  • [30] Diophantine triples with values in binary recurrences
    Fuchs, Clemens
    Luca, Florian
    Szalay, Laszlo
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2008, 7 (04) : 579 - 608