Common values of a class of linear recurrences

被引:2
|
作者
Petho, Attila [1 ]
机构
[1] Univ Debrecen, Dept Comp Sci, POB 400, H-4002 Debrecen, Hungary
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2022年 / 33卷 / 06期
关键词
Linear recurrences; Baker?s method; S-UNITS; LOGARITHMS; NUMBERS;
D O I
10.1016/j.indag.2022.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (an), (bn) be linear recursive sequences of integers with characteristic polynomials A(X), B(X) is an element of Z[X] respectively. Assume that A(X) has a dominating and simple real root alpha, while B(X) has a pair of conjugate complex dominating and simple roots C, C over line . Assume further that alpha, C, alpha/C and C over line /C are not roots of unity and delta = log |C|/log |alpha| is an element of Q. Then there are effectively computable constants c0, c1 > 0 such that the inequality|an - bm| > |an|1-(c0 log2 n)/nholds for all n, m is an element of Z2 >= 0 with max{n, m} > c1. We present c0 explicitly.(c) 2022 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1172 / 1188
页数:17
相关论文
共 50 条
  • [41] MULTIPLICITIES OF ALGEBRAIC LINEAR RECURRENCES
    SCHLICKEWEI, HP
    ACTA MATHEMATICA, 1993, 170 (02) : 151 - 180
  • [42] ON THE DETERMINATION OF PERIODS OF LINEAR RECURRENCES
    Fall, Oumar
    Diankha, Oumar
    Mignotte, Maurice
    Sanghare, Mamadou
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2012, 26 (02): : 159 - 172
  • [43] On the Solution of Linear Mean Recurrences
    Borwein, David
    Borwein, Jonathan M.
    Sims, Brailey
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (06): : 486 - 498
  • [44] RESURRECTING THE ASYMPTOTICS OF LINEAR RECURRENCES
    WIMP, J
    ZEILBERGER, D
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 111 (01) : 162 - 176
  • [45] On the numerical evaluation of linear recurrences
    Barrio, R
    Melendo, B
    Serrano, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 150 (01) : 71 - 86
  • [46] Linear recurrences and Chebyshev polynomials
    Kitaev, S
    Mansour, T
    FIBONACCI QUARTERLY, 2005, 43 (03): : 256 - 261
  • [47] Products of the terms of linear recurrences
    Kiss, P
    Mátyás, F
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2001, 37 (3-4) : 355 - 362
  • [48] On products of the terms of linear recurrences
    Brindza, B
    Liptai, K
    Szalay, L
    NUMBER THEORY: DIOPHANTINE, COMPUTATIONAL AND ALGEBRAIC ASPECTS, 1998, : 101 - 106
  • [49] On the number of residues of linear recurrences
    Sanna, Carlo
    RESEARCH IN NUMBER THEORY, 2022, 8 (01)
  • [50] ON SOME PROPERTIES OF LINEAR RECURRENCES
    KISS, P
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1983, 30 (3-4): : 273 - 281