Based on the Clustering of the Background for Hyperspectral Imaging Anomaly Detection

被引:0
|
作者
Li Xiaohui [1 ]
Zhao Chunhui [1 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin, Peoples R China
关键词
hyperspectral image; anomaly target detection; EM algorithm; RX algorithm; smooth background;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
RX algorithm is the most classical algorithm in hyperspectral image anomaly detection algorithm, but the detection effect down significantly in a complicated and nonhomogeneous background. This paper use EM algorithm to smooth background by clustering the adjacent area of the pixel under test (PUT); in the process of detection, using the average of clustering replace the original background, in order to reduce the influence of the background complexity on the detection algorithm. With AVIRIS hyperspectral data, the simulation experiment has good detection effect.
引用
收藏
页码:1345 / 1348
页数:4
相关论文
共 50 条
  • [31] Anomaly-background separation and particle swarm optimization based band selection for hyperspectral anomaly detection
    Shang, Xiaodi
    Duan, Yiqi
    Wang, Xiaopeng
    Fu, Baijia
    Sun, Xudong
    [J]. IET IMAGE PROCESSING, 2024, 18 (08) : 2053 - 2063
  • [32] Salient object detection in hyperspectral images using deep background reconstruction based anomaly detection
    Singh, Pangambam Sendash
    Karthikeyan, Subbiah
    [J]. REMOTE SENSING LETTERS, 2022, 13 (02) : 184 - 195
  • [33] Anomaly detection for replacement model in hyperspectral imaging
    Vincent, Francois
    Besson, Olivier
    Matteoli, Stefania
    [J]. SIGNAL PROCESSING, 2021, 185
  • [34] Background Representation Learning With Structural Constraint for Hyperspectral Anomaly Detection
    Ma, Xiaoxiao
    Zhang, Xiangrong
    Huyan, Ning
    Gu, Jing
    Tang, Xu
    Jiao, Licheng
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [35] Anomaly Detection with Bayesian Gauss Background Model in Hyperspectral Images
    Sahin, Yunus Emre
    Arisoy, Sertac
    Kayabol, Koray
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [36] Hyperspectral Anomaly Detection via Spatial Density Background Purification
    Tu, Bing
    Li, Nanying
    Liao, Zhuolang
    Ou, Xianfeng
    Zhang, Guoyun
    [J]. REMOTE SENSING, 2019, 11 (22)
  • [37] Learnable Background Endmember With Subspace Representation for Hyperspectral Anomaly Detection
    Guo, Tan
    He, Long
    Luo, Fulin
    Gong, Xiuwen
    Zhang, Lei
    Gao, Xinbo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [38] Joint Kurtosis-Skewness-Based Background Smoothing for Local Hyperspectral Anomaly Detection
    Wang, Yulei
    Zhao, Yiming
    Xia, Yun
    Chang, Chein-, I
    Song, Meiping
    Yu, Chunyan
    [J]. COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL II: SIGNAL PROCESSING, 2020, 516 : 587 - 593
  • [39] Hyperspectral anomaly detection based on spectral-spatial background joint sparse representation
    Zhang, Lili
    Zhao, Chunhui
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2017, 50 (01) : 362 - 376
  • [40] Autoencoder and Adversarial-Learning-Based Semisupervised Background Estimation for Hyperspectral Anomaly Detection
    Xie, Weiying
    Liu, Baozhu
    Li, Yunsong
    Lei, Jie
    Du, Qian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (08): : 5416 - 5427