Anomaly detection for replacement model in hyperspectral imaging

被引:6
|
作者
Vincent, Francois [1 ]
Besson, Olivier [1 ]
Matteoli, Stefania [2 ]
机构
[1] ISAE SUPAERO, 10 Ave Edouard Belin, F-31055 Toulouse, France
[2] CNR, IEIIT, Via Girolamo Caruso 16, Pisa, Italy
关键词
Hyperspectral imagery; Replacement model; GLRT; Anomaly detection;
D O I
10.1016/j.sigpro.2021.108079
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we consider Anomaly Detection in the hyperspectral context, and we extend the popular RX detector, initially designed under the standard additive model, to the replacement model case. Indeed, in this more realistic framework, the target, if present, is supposed to replace a part of the background. We show how to estimate this background power variation to improve the standard RX scheme. The obtained Replacement RX (RRX) is shown to be closed-form and outperforms the standard RX on a real data benchmark experiment. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] ROBUST ANOMALY DETECTION IN HYPERSPECTRAL IMAGING
    Frontera-Pons, J.
    Veganzones, M. A.
    Velasco-Forero, S.
    Pascal, F.
    Ovarlez, J. P.
    Chanussot, J.
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [2] Based on the Clustering of the Background for Hyperspectral Imaging Anomaly Detection
    Li Xiaohui
    Zhao Chunhui
    2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 1345 - 1348
  • [3] Based on the clustering of the background for hyperspectral imaging anomaly detection
    Harbin Engineering University, College of Information and Communication Engineering, Harbin, China
    Int. Conf. Electron., Commun. Control, ICECC - Proc., 2011, (1345-1348):
  • [4] Anomaly detection using the hyperspectral polarimetric imaging testbed
    Cavanaugh, David B.
    Castle, Kenneth R.
    Davenport, Wayne
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XII PTS 1 AND 2, 2006, 6233
  • [5] Maximized subspace model for hyperspectral anomaly detection
    Edisanter Lo
    Pattern Analysis and Applications, 2012, 15 : 225 - 235
  • [6] Maximized subspace model for hyperspectral anomaly detection
    Lo, Edisanter
    PATTERN ANALYSIS AND APPLICATIONS, 2012, 15 (03) : 225 - 235
  • [7] Variable subspace model for hyperspectral anomaly detection
    Edisanter Lo
    Pattern Analysis and Applications, 2013, 16 : 393 - 405
  • [8] Matrix Autoregressive Model for Hyperspectral Anomaly Detection
    Wang, Jingxuan
    Sun, Jinqiu
    Zhu, Yu
    Xia, Yong
    Zhang, Yanning
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8656 - 8667
  • [9] Partitioned correlation model for hyperspectral anomaly detection
    Lo, Edisanter
    OPTICAL ENGINEERING, 2015, 54 (12)
  • [10] Variable subspace model for hyperspectral anomaly detection
    Lo, Edisanter
    PATTERN ANALYSIS AND APPLICATIONS, 2013, 16 (03) : 393 - 405