Based on the Clustering of the Background for Hyperspectral Imaging Anomaly Detection

被引:0
|
作者
Li Xiaohui [1 ]
Zhao Chunhui [1 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin, Peoples R China
关键词
hyperspectral image; anomaly target detection; EM algorithm; RX algorithm; smooth background;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
RX algorithm is the most classical algorithm in hyperspectral image anomaly detection algorithm, but the detection effect down significantly in a complicated and nonhomogeneous background. This paper use EM algorithm to smooth background by clustering the adjacent area of the pixel under test (PUT); in the process of detection, using the average of clustering replace the original background, in order to reduce the influence of the background complexity on the detection algorithm. With AVIRIS hyperspectral data, the simulation experiment has good detection effect.
引用
收藏
页码:1345 / 1348
页数:4
相关论文
共 50 条
  • [1] Clustering based background learning for hyperspectral anomaly detection
    Aghili, Mohamad Ebrahim
    Imani, Maryam
    Ghassemian, Hassan
    [J]. EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2023, 26 (03): : 477 - 487
  • [2] Hyperspectral Anomaly Detection Method Based on Adaptive Background Extraction
    Li, Min
    Li, Puhuang
    Xu, Haiyan
    [J]. IEEE ACCESS, 2020, 8 : 35446 - 35454
  • [3] Hyperspectral anomaly detection based on background determination and neighborhood compensation
    Ma, Shixin
    Liu, Chuntong
    Wang, Xin
    Gan, Yuanying
    Zhang, Zhengyi
    [J]. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2019, 40 (03): : 239 - 245
  • [4] HYPERSPECTRAL ANOMALY DETECTION BASED ON ISOLATION FOREST WITH BAND CLUSTERING
    Huang, Yuancheng
    Xue, Yuanyuan
    Su, Yuanchao
    Han, Shanshan
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2416 - 2419
  • [5] Structured Background Modeling for Hyperspectral Anomaly Detection
    Li, Fei
    Zhang, Lei
    Zhang, Xiuwei
    Chen, Yanjia
    Jiang, Dongmei
    Zhao, Genping
    Zhang, Yanning
    [J]. SENSORS, 2018, 18 (09)
  • [6] Hyperspectral Anomaly Detection Based on Regularized Background Abundance Tensor Decomposition
    Shang, Wenting
    Jouni, Mohamad
    Wu, Zebin
    Xu, Yang
    Dalla Mura, Mauro
    Wei, Zhihui
    [J]. REMOTE SENSING, 2023, 15 (06)
  • [7] PATH-BASED BACKGROUND MODEL AUGMENTATION FOR HYPERSPECTRAL ANOMALY DETECTION
    Emerson, Tegan H.
    Doster, Timothy
    Olson, Colin C.
    [J]. 2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [8] Hyperspectral Target Detection Research Based on Background Modeling and Anomaly Discrimination
    Chang, Shizhen
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2022, 47 (01): : 158 - 158
  • [9] A background refinement method based on local density for hyperspectral anomaly detection
    Zhao Chun-hui
    Wang Xin-peng
    Yao Xi-feng
    Tian Ming-hua
    [J]. JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2018, 25 (01) : 84 - 94
  • [10] Hyperspectral Anomaly Detection Based on Background Purification and Spectral Feature Extraction
    Zhao, Minghua
    Zheng, Wen
    Hu, Jing
    [J]. INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING, ICOPEN 2023, 2024, 13069