Anomaly detection for replacement model in hyperspectral imaging

被引:6
|
作者
Vincent, Francois [1 ]
Besson, Olivier [1 ]
Matteoli, Stefania [2 ]
机构
[1] ISAE SUPAERO, 10 Ave Edouard Belin, F-31055 Toulouse, France
[2] CNR, IEIIT, Via Girolamo Caruso 16, Pisa, Italy
关键词
Hyperspectral imagery; Replacement model; GLRT; Anomaly detection;
D O I
10.1016/j.sigpro.2021.108079
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we consider Anomaly Detection in the hyperspectral context, and we extend the popular RX detector, initially designed under the standard additive model, to the replacement model case. Indeed, in this more realistic framework, the target, if present, is supposed to replace a part of the background. We show how to estimate this background power variation to improve the standard RX scheme. The obtained Replacement RX (RRX) is shown to be closed-form and outperforms the standard RX on a real data benchmark experiment. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Target-to-Anomaly Conversion for Hyperspectral Anomaly Detection
    Chang, Chein-, I
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [32] Anomaly Detection and Estimation in Hyperspectral Imaging using Random Matrix Theory tools
    Terreaux, Eugenie
    Ovarlez, Jean-Philippe
    Pascal, Frederic
    2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 169 - 172
  • [33] Hyperspectral anomaly detection based on constrained eigenvalue-eigenvector model
    Lo, Edisanter
    PATTERN ANALYSIS AND APPLICATIONS, 2017, 20 (02) : 531 - 555
  • [34] Variable factorization model based on numerical optimization for hyperspectral anomaly detection
    Edisanter Lo
    Pattern Analysis and Applications, 2014, 17 : 291 - 310
  • [35] PATH-BASED BACKGROUND MODEL AUGMENTATION FOR HYPERSPECTRAL ANOMALY DETECTION
    Emerson, Tegan H.
    Doster, Timothy
    Olson, Colin C.
    2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [36] A joint model based on graph and deep learning for hyperspectral anomaly detection
    Zhang, Lili
    Lin, Fang
    Fu, Baohong
    INFRARED PHYSICS & TECHNOLOGY, 2024, 139
  • [37] Hyperspectral anomaly change detection model based on independent component analysis
    Lin Y.
    Wang N.
    Zhang L.
    Cen Y.
    Sun X.
    Lu H.
    Tong Q.
    Yaogan Xuebao/Journal of Remote Sensing, 2019, 23 (06): : 1167 - 1176
  • [38] Variable factorization model based on numerical optimization for hyperspectral anomaly detection
    Lo, Edisanter
    PATTERN ANALYSIS AND APPLICATIONS, 2014, 17 (02) : 291 - 310
  • [39] Adversarial autoencoder for hyperspectral anomaly detection
    Du Q.
    Xie W.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (07): : 1105 - 1114
  • [40] Anomaly detection in hyperspectral imagery: an overview
    Ben Salem, Manel
    Ettabaa, Karim Saheb
    Hamdi, Mohamed Ali
    2014 FIRST INTERNATIONAL IMAGE PROCESSING, APPLICATIONS AND SYSTEMS CONFERENCE (IPAS), 2014,