Anomaly Detection and Estimation in Hyperspectral Imaging using Random Matrix Theory tools

被引:0
|
作者
Terreaux, Eugenie [1 ]
Ovarlez, Jean-Philippe [2 ,3 ]
Pascal, Frederic [1 ]
机构
[1] Univ Paris 11, CNRS, L2S CentraleSupelec, 3 Rue Joliot Curie, F-91190 Gif Sur Yvette, France
[2] Off Natl Etud & Rech Aerosp, DEMR TSI, F-91120 Palaiseau, France
[3] SONDRA CentraleSupelec, Paris, France
关键词
INTRINSIC DIMENSION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Anomaly detection aims to detect sources with different spectral characteristics from the background in an hyperspectral image. Classical tools for anomaly detection and estimation are known to have poor performance when they are used on high dimensional hyperspectral image since typically both the number of available sample and their size are large for this kind of imaging. New estimation methods for the number of anomalies, adapted to large dimensional systems, are required. This article points out the limits of classical methods such as Akaike Information Criterion (AIC) or Minimum Description Length (MDL) criteria and it proposes a new estimator based on Random Matrix Theory results better adapted for hyperspectral imaging. Finally, the proposed method is validated on both Monte-Carlo simulations and on experimental data.
引用
收藏
页码:169 / 172
页数:4
相关论文
共 50 条
  • [1] Improved Estimation of the Intrinsic Dimension of a Hyperspectral Image Using Random Matrix Theory
    Berman, Mark
    [J]. REMOTE SENSING, 2019, 11 (09)
  • [2] Comparative Analysis of Covariance Matrix Estimation for Anomaly Detection in Hyperspectral Images
    Velasco-Forero, Santiago
    Chen, Marcus
    Goh, Alvina
    Pang, Sze Kim
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2015, 9 (06) : 1061 - 1073
  • [3] Anomaly detection using the hyperspectral polarimetric imaging testbed
    Cavanaugh, David B.
    Castle, Kenneth R.
    Davenport, Wayne
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XII PTS 1 AND 2, 2006, 6233
  • [4] Hyperspectral Anomaly Detection: A Dual Theory of Hyperspectral Target Detection
    Chang, Chein-, I
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] Improved estimation of local background covariance matrix for anomaly detection in hyperspectral images
    Matteoli, Stefania
    Diani, Marco
    Corsini, Giovanni
    [J]. OPTICAL ENGINEERING, 2010, 49 (04)
  • [6] ROBUST ANOMALY DETECTION IN HYPERSPECTRAL IMAGING
    Frontera-Pons, J.
    Veganzones, M. A.
    Velasco-Forero, S.
    Pascal, F.
    Ovarlez, J. P.
    Chanussot, J.
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [7] Hyperspectral Anomaly Detection With Morphological Random Walker
    Huang, Zhihong
    Zhang, Keren
    Xiao, Jian
    Chen, Junxingxu
    Zhu, Guangming
    Wu, Sheng
    [J]. IEEE ACCESS, 2021, 9 : 102114 - 102124
  • [8] MORPHOLOGICAL RANDOM WALKER FOR HYPERSPECTRAL ANOMALY DETECTION
    Huang, Zhihong
    Li, Shutao
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2248 - 2251
  • [9] Anomaly Detection in Metro Passenger Flow Based on Random Matrix Theory
    Chen, Xiaoxu
    Yang, Chao
    Xu, Xiangdong
    Gong, Yubing
    [J]. 2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 625 - 630
  • [10] Anomaly Detection in Hyperspectral Data with Matrix Decomposition
    Kucuk, Fatma
    Toreyin, Behcet Ugur
    Celebi, Fatih Vehbi
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,