MORPHOLOGICAL RANDOM WALKER FOR HYPERSPECTRAL ANOMALY DETECTION

被引:0
|
作者
Huang, Zhihong [1 ]
Li, Shutao [1 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
关键词
Hyperspectral images; anomaly detection; random walker; extended morphological profiles; morphological property; CLASSIFICATION;
D O I
10.1109/igarss.2019.8898575
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper introduces a novel morphological random walker (MRW) technique for hyperspectral anomaly detection. The proposed MRW detector introduces a morphology-based objective function into a random walker (RW) optimization model, which can fully exploit the morphological property of anomalies for detection. Specifically, the proposed algorithm consists of two main steps. First, the extended morphological profiles and differential operations are employed to exploit the morphological property of anomalies. Then, based on the morphological property, a morphology-based objective function is constructed, and this objective function is incorporated into the RW-based optimization model for anomaly detection. Experimental results show that the proposed detector outperforms several state-of-the-art anomaly detectors.
引用
收藏
页码:2248 / 2251
页数:4
相关论文
共 50 条
  • [1] Hyperspectral Anomaly Detection With Morphological Random Walker
    Huang, Zhihong
    Zhang, Keren
    Xiao, Jian
    Chen, Junxingxu
    Zhu, Guangming
    Wu, Sheng
    [J]. IEEE ACCESS, 2021, 9 : 102114 - 102124
  • [2] Anomaly Detection of Hyperspectral Imagery Using Differential Morphological Profile
    Taghipour, Ashkan
    Ghassemian, Hassan
    Mirzapour, Fardin
    [J]. 2016 24TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2016, : 1219 - 1223
  • [3] Hyperspectral Anomaly Detection via Low-Rank Decomposition and Morphological Filtering
    Cheng, Xiaoyu
    Xu, Yating
    Zhang, Junjie
    Zeng, Dan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [4] A New Morphological Anomaly Detection Algorithm for Hyperspectral Images and its GPU Implementation
    Paz, Abel
    Plaza, Antonio
    [J]. SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING VII, 2011, 8157
  • [5] Background Purification Framework With Extended Morphological Attribute Profile for Hyperspectral Anomaly Detection
    Huang, Ju
    Liu, Kang
    Xu, Mingliang
    Perc, Matjaz
    Li, Xuelong
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8113 - 8124
  • [6] Anomaly Detection and Estimation in Hyperspectral Imaging using Random Matrix Theory tools
    Terreaux, Eugenie
    Ovarlez, Jean-Philippe
    Pascal, Frederic
    [J]. 2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 169 - 172
  • [7] Effective Anomaly Space for Hyperspectral Anomaly Detection
    Chang, Chein-, I
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Hyperspectral Anomaly Detection: A Survey
    Su, Hongjun
    Wu, Zhaoyue
    Zhang, Huihui
    Du, Qian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (01) : 64 - 90
  • [9] ANOMALY DETECTION FOR HYPERSPECTRAL IMAGINARY
    Denisova, A. Yu.
    Myasnikov, V. V.
    [J]. COMPUTER OPTICS, 2014, 38 (02) : 287 - 296
  • [10] A SemiparametricModel for Hyperspectral Anomaly Detection
    Rosario, Dalton
    [J]. JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2012, 2012