Anomaly Detection and Estimation in Hyperspectral Imaging using Random Matrix Theory tools

被引:0
|
作者
Terreaux, Eugenie [1 ]
Ovarlez, Jean-Philippe [2 ,3 ]
Pascal, Frederic [1 ]
机构
[1] Univ Paris 11, CNRS, L2S CentraleSupelec, 3 Rue Joliot Curie, F-91190 Gif Sur Yvette, France
[2] Off Natl Etud & Rech Aerosp, DEMR TSI, F-91120 Palaiseau, France
[3] SONDRA CentraleSupelec, Paris, France
关键词
INTRINSIC DIMENSION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Anomaly detection aims to detect sources with different spectral characteristics from the background in an hyperspectral image. Classical tools for anomaly detection and estimation are known to have poor performance when they are used on high dimensional hyperspectral image since typically both the number of available sample and their size are large for this kind of imaging. New estimation methods for the number of anomalies, adapted to large dimensional systems, are required. This article points out the limits of classical methods such as Akaike Information Criterion (AIC) or Minimum Description Length (MDL) criteria and it proposes a new estimator based on Random Matrix Theory results better adapted for hyperspectral imaging. Finally, the proposed method is validated on both Monte-Carlo simulations and on experimental data.
引用
收藏
页码:169 / 172
页数:4
相关论文
共 50 条
  • [21] Nonparametric Bayesian background estimation for hyperspectral anomaly detection
    Arisoy, Sertac
    Kayabol, Koray
    [J]. DIGITAL SIGNAL PROCESSING, 2021, 111 (111)
  • [22] GSEAD: Graphical Scoring Estimation for Hyperspectral Anomaly Detection
    Zhao, Rui
    Zhang, Liangpei
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (02) : 725 - 739
  • [23] Based on the Clustering of the Background for Hyperspectral Imaging Anomaly Detection
    Li Xiaohui
    Zhao Chunhui
    [J]. 2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 1345 - 1348
  • [24] Based on the clustering of the background for hyperspectral imaging anomaly detection
    Harbin Engineering University, College of Information and Communication Engineering, Harbin, China
    [J]. Int. Conf. Electron., Commun. Control, ICECC - Proc., 2011, (1345-1348):
  • [25] Game Theory-Based Hyperspectral Anomaly Detection
    Huang, Zhihong
    Kang, Xudong
    Li, Shutao
    Hao, Qiaobo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04): : 2965 - 2976
  • [26] SHRINKAGE ESTIMATION OF LARGE DIMENSIONAL PRECISION MATRIX USING RANDOM MATRIX THEORY
    Wang, Cheng
    Pan, Guangming
    Tong, Tiejun
    Zhu, Lixing
    [J]. STATISTICA SINICA, 2015, 25 (03) : 993 - 1008
  • [27] Laplacian matrix graph for anomaly target detection in hyperspectral images
    Zhang, Fenggan
    He, Fang
    Hu, Haojie
    [J]. ELECTRONICS LETTERS, 2022, 58 (08) : 312 - 314
  • [28] Matrix Factorization With Framelet and Saliency Priors for Hyperspectral Anomaly Detection
    Shen, Xiangfei
    Liu, Haijun
    Nie, Jing
    Zhou, Xichuan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [29] Non-Negative Matrix Factorization for Hyperspectral Anomaly Detection
    Aizenshtein, Sofia
    Abergel, Ido
    Mailler, Moshe
    Segal, Gili
    Rotman, Stanley R.
    [J]. ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY XXVI, 2020, 11392
  • [30] Hyperspectral Anomaly Detection Using Attribute Profiles
    Taghipour, Ashkan
    Ghassemian, Hassan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1136 - 1140