Hyperspectral anomaly detection based on spectral-spatial background joint sparse representation

被引:10
|
作者
Zhang, Lili [1 ,2 ]
Zhao, Chunhui [1 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Dept Signal & Informat Proc, Harbin, Peoples R China
[2] Daqing Normal Univ, Coll Mech & Elect Engn, Dept Elect Informat Engn, Daqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image; anomaly detection; spectral-spatial method; background joint sparse representation; linear local tangent space alignment; alignment matrix; NONLINEAR DIMENSIONALITY REDUCTION; TANGENT-SPACE ALIGNMENT; ALGORITHMS;
D O I
10.1080/22797254.2017.1331697
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In recent years, some algorithms based on sparse representation have been proposed to improve the detection performance for hyperspectral anomaly detection. Among these algorithms, the background joint sparse representation (BJSR) algorithm adaptively selects the most representative background bases for the local region and can obtain satisfactory results. However, BJSR mainly considers spectral characteristics of hyperspectral image. In this paper, we propose a BJSR-based spectral-spatial method. BJSR is first employed to process the original hyperspectral image in spectral domain. Then, linear local tangent space alignment (LLTSA) is used to obtain the low-dimensional manifold of the hyperspectral image. Next, spatial BJSR is used to process the low-dimensional manifold obtained by LLTSA. Finally, the proposed algorithm combines spectral BJSR with spatial BJSR to detect the anomaly targets. The experimental results demonstrate that the proposed algorithm can achieve a better performance when compared with the comparison algorithms.
引用
收藏
页码:362 / 376
页数:15
相关论文
共 50 条
  • [1] Hyperspectral Anomaly Detection by the Use of Background Joint Sparse Representation
    Li, Jiayi
    Zhang, Hongyan
    Zhang, Liangpei
    Ma, Li
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2523 - 2533
  • [2] Spectral-spatial hyperspectral image ensemble classification via joint sparse representation
    Zhang, Erlei
    Zhang, Xiangrong
    Jiao, Licheng
    Li, Lin
    Hou, Biao
    [J]. PATTERN RECOGNITION, 2016, 59 : 42 - 54
  • [3] A Spectral-Spatial Method Based on Fractional Fourier Transform and Collaborative Representation for Hyperspectral Anomaly Detection
    Zhao, Chunhui
    Li, Chuang
    Feng, Shou
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (07) : 1259 - 1263
  • [4] Noise Removal From Hyperspectral Image With Joint Spectral-Spatial Distributed Sparse Representation
    Li, Jie
    Yuan, Qiangqiang
    Shen, Huanfeng
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (09): : 5425 - 5439
  • [5] Spectral-Spatial Feature Fusion for Hyperspectral Anomaly Detection
    Liu, Shaocong
    Li, Zhen
    Wang, Guangyuan
    Qiu, Xianfei
    Liu, Tinghao
    Cao, Jing
    Zhang, Donghui
    [J]. SENSORS, 2024, 24 (05)
  • [6] Hyperspectral Anomaly Detection Using the Spectral-Spatial Graph
    Tu, Bing
    Wang, Zhi
    Ouyang, Huiting
    Yang, Xianchang
    Li, Jun
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] Spectral-Spatial Feature Extraction for Hyperspectral Anomaly Detection
    Lei, Jie
    Xie, Weiying
    Yang, Jian
    Li, Yunsong
    Chang, Chein-, I
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 8131 - 8143
  • [8] Adaptive Spectral-Spatial Compression of Hyperspectral Image With Sparse Representation
    Fu, Wei
    Li, Shutao
    Fang, Leyuan
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (02): : 671 - 682
  • [9] A spectral-spatial method based on low-rank and sparse matrix decomposition for hyperspectral anomaly detection
    Zhang, Lili
    Zhao, Chunhui
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (14) : 4047 - 4068
  • [10] Hyperspectral Band Selection for Spectral-Spatial Anomaly Detection
    Xie, Weiying
    Li, Yunsong
    Lei, Jie
    Yang, Jian
    Chang, Chein-, I
    Li, Zhen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3426 - 3436