Spectral-Spatial Feature Fusion for Hyperspectral Anomaly Detection

被引:2
|
作者
Liu, Shaocong [1 ]
Li, Zhen [1 ]
Wang, Guangyuan [1 ]
Qiu, Xianfei [1 ]
Liu, Tinghao [1 ]
Cao, Jing [1 ]
Zhang, Donghui [1 ]
机构
[1] China Acad Space Technol CAST, Inst Remote Sensing Satellite, Beijing 100094, Peoples R China
关键词
hyperspectral image; isolation forest; local saliency detection; anomaly detection; spectral-spatial fusion; SUBSPACE MODEL; LOW-RANK; ALGORITHM;
D O I
10.3390/s24051652
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Hyperspectral anomaly detection is used to recognize unusual patterns or anomalies in hyperspectral data. Currently, many spectral-spatial detection methods have been proposed with a cascaded manner; however, they often neglect the complementary characteristics between the spectral and spatial dimensions, which easily leads to yield high false alarm rate. To alleviate this issue, a spectral-spatial information fusion (SSIF) method is designed for hyperspectral anomaly detection. First, an isolation forest is exploited to obtain spectral anomaly map, in which the object-level feature is constructed with an entropy rate segmentation algorithm. Then, a local spatial saliency detection scheme is proposed to produce the spatial anomaly result. Finally, the spectral and spatial anomaly scores are integrated together followed by a domain transform recursive filtering to generate the final detection result. Experiments on five hyperspectral datasets covering ocean and airport scenes prove that the proposed SSIF produces superior detection results over other state-of-the-art detection techniques.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Spectral-Spatial Feature Extraction for Hyperspectral Anomaly Detection
    Lei, Jie
    Xie, Weiying
    Yang, Jian
    Li, Yunsong
    Chang, Chein-, I
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 8131 - 8143
  • [2] Spectral-Spatial Complementary Decision Fusion for Hyperspectral Anomaly Detection
    Xiang, Pei
    Li, Huan
    Song, Jiangluqi
    Wang, Dabao
    Zhang, Jiajia
    Zhou, Huixin
    [J]. REMOTE SENSING, 2022, 14 (04)
  • [3] Kernel PCA for Anomaly Detection in Hyperspectral Images Using Spectral-Spatial Fusion
    Meinhold, R. T.
    Olson, C. C.
    Doster, T.
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXIV, 2018, 10644
  • [4] Hyperspectral Anomaly Detection Using the Spectral-Spatial Graph
    Tu, Bing
    Wang, Zhi
    Ouyang, Huiting
    Yang, Xianchang
    Li, Jun
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] Hyperspectral Band Selection for Spectral-Spatial Anomaly Detection
    Xie, Weiying
    Li, Yunsong
    Lei, Jie
    Yang, Jian
    Chang, Chein-, I
    Li, Zhen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3426 - 3436
  • [6] Deep Multiscale Spectral-Spatial Feature Fusion for Hyperspectral Images Classification
    Liang, Miaomiao
    Jiao, Licheng
    Yang, Shuyuan
    Liu, Fang
    Hou, Biao
    Chen, Huan
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (08) : 2911 - 2924
  • [7] A Multiview Spectral-Spatial Feature Extraction and Fusion Framework for Hyperspectral Image Classification
    Feng, Jia
    Zhang, Junping
    Zhang, Ye
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [8] Data Field Modeling and Spectral-Spatial Feature Fusion for Hyperspectral Data Classification
    Liu, Da
    Li, Jianxun
    [J]. SENSORS, 2016, 16 (12)
  • [9] A Lightweight Spectral-Spatial Feature Extraction and Fusion Network for Hyperspectral Image Classification
    Chen, Linlin
    Wei, Zhihui
    Xu, Yang
    [J]. REMOTE SENSING, 2020, 12 (09)
  • [10] Spectral-Spatial Gabor Surface Feature Fusion Approach for Hyperspectral Imagery Classification
    Jia, Sen
    Wu, Kuilin
    Zhu, Jiasong
    Jia, Xiuping
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02): : 1142 - 1154