Spectral-Spatial Feature Fusion for Hyperspectral Anomaly Detection
被引:2
|
作者:
Liu, Shaocong
论文数: 0引用数: 0
h-index: 0
机构:
China Acad Space Technol CAST, Inst Remote Sensing Satellite, Beijing 100094, Peoples R ChinaChina Acad Space Technol CAST, Inst Remote Sensing Satellite, Beijing 100094, Peoples R China
Liu, Shaocong
[1
]
Li, Zhen
论文数: 0引用数: 0
h-index: 0
机构:
China Acad Space Technol CAST, Inst Remote Sensing Satellite, Beijing 100094, Peoples R ChinaChina Acad Space Technol CAST, Inst Remote Sensing Satellite, Beijing 100094, Peoples R China
Li, Zhen
[1
]
Wang, Guangyuan
论文数: 0引用数: 0
h-index: 0
机构:
China Acad Space Technol CAST, Inst Remote Sensing Satellite, Beijing 100094, Peoples R ChinaChina Acad Space Technol CAST, Inst Remote Sensing Satellite, Beijing 100094, Peoples R China
Wang, Guangyuan
[1
]
Qiu, Xianfei
论文数: 0引用数: 0
h-index: 0
机构:
China Acad Space Technol CAST, Inst Remote Sensing Satellite, Beijing 100094, Peoples R ChinaChina Acad Space Technol CAST, Inst Remote Sensing Satellite, Beijing 100094, Peoples R China
Qiu, Xianfei
[1
]
Liu, Tinghao
论文数: 0引用数: 0
h-index: 0
机构:
China Acad Space Technol CAST, Inst Remote Sensing Satellite, Beijing 100094, Peoples R ChinaChina Acad Space Technol CAST, Inst Remote Sensing Satellite, Beijing 100094, Peoples R China
Liu, Tinghao
[1
]
Cao, Jing
论文数: 0引用数: 0
h-index: 0
机构:
China Acad Space Technol CAST, Inst Remote Sensing Satellite, Beijing 100094, Peoples R ChinaChina Acad Space Technol CAST, Inst Remote Sensing Satellite, Beijing 100094, Peoples R China
Cao, Jing
[1
]
Zhang, Donghui
论文数: 0引用数: 0
h-index: 0
机构:
China Acad Space Technol CAST, Inst Remote Sensing Satellite, Beijing 100094, Peoples R ChinaChina Acad Space Technol CAST, Inst Remote Sensing Satellite, Beijing 100094, Peoples R China
Zhang, Donghui
[1
]
机构:
[1] China Acad Space Technol CAST, Inst Remote Sensing Satellite, Beijing 100094, Peoples R China
Hyperspectral anomaly detection is used to recognize unusual patterns or anomalies in hyperspectral data. Currently, many spectral-spatial detection methods have been proposed with a cascaded manner; however, they often neglect the complementary characteristics between the spectral and spatial dimensions, which easily leads to yield high false alarm rate. To alleviate this issue, a spectral-spatial information fusion (SSIF) method is designed for hyperspectral anomaly detection. First, an isolation forest is exploited to obtain spectral anomaly map, in which the object-level feature is constructed with an entropy rate segmentation algorithm. Then, a local spatial saliency detection scheme is proposed to produce the spatial anomaly result. Finally, the spectral and spatial anomaly scores are integrated together followed by a domain transform recursive filtering to generate the final detection result. Experiments on five hyperspectral datasets covering ocean and airport scenes prove that the proposed SSIF produces superior detection results over other state-of-the-art detection techniques.
机构:
China Univ Geosci, Sch Comp Sci, Wuhan 430074, Hubei, Peoples R China
Qinzhou Univ, Beibu Gulf Big Data Resources Utilisat Lab, Qinzhou 535000, Peoples R China
Guangxi Key Lab Beibu Gulf Marine Biodivers Conse, Qinzhou 535000, Peoples R ChinaChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Hubei, Peoples R China
Chen, Zhikun
Jiang, Junjun
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Comp Sci, Wuhan 430074, Hubei, Peoples R ChinaChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Hubei, Peoples R China
Jiang, Junjun
Jiang, Xinwei
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Comp Sci, Wuhan 430074, Hubei, Peoples R ChinaChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Hubei, Peoples R China
Jiang, Xinwei
Fang, Xiaoping
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Comp Sci, Wuhan 430074, Hubei, Peoples R ChinaChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Hubei, Peoples R China
Fang, Xiaoping
Cai, Zhihua
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Comp Sci, Wuhan 430074, Hubei, Peoples R China
Qinzhou Univ, Beibu Gulf Big Data Resources Utilisat Lab, Qinzhou 535000, Peoples R ChinaChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Hubei, Peoples R China