Hyperspectral anomaly detection based on spectral-spatial background joint sparse representation

被引:10
|
作者
Zhang, Lili [1 ,2 ]
Zhao, Chunhui [1 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Dept Signal & Informat Proc, Harbin, Peoples R China
[2] Daqing Normal Univ, Coll Mech & Elect Engn, Dept Elect Informat Engn, Daqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image; anomaly detection; spectral-spatial method; background joint sparse representation; linear local tangent space alignment; alignment matrix; NONLINEAR DIMENSIONALITY REDUCTION; TANGENT-SPACE ALIGNMENT; ALGORITHMS;
D O I
10.1080/22797254.2017.1331697
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In recent years, some algorithms based on sparse representation have been proposed to improve the detection performance for hyperspectral anomaly detection. Among these algorithms, the background joint sparse representation (BJSR) algorithm adaptively selects the most representative background bases for the local region and can obtain satisfactory results. However, BJSR mainly considers spectral characteristics of hyperspectral image. In this paper, we propose a BJSR-based spectral-spatial method. BJSR is first employed to process the original hyperspectral image in spectral domain. Then, linear local tangent space alignment (LLTSA) is used to obtain the low-dimensional manifold of the hyperspectral image. Next, spatial BJSR is used to process the low-dimensional manifold obtained by LLTSA. Finally, the proposed algorithm combines spectral BJSR with spatial BJSR to detect the anomaly targets. The experimental results demonstrate that the proposed algorithm can achieve a better performance when compared with the comparison algorithms.
引用
收藏
页码:362 / 376
页数:15
相关论文
共 50 条
  • [21] Superpixel based Feature Specific Sparse Representation for Spectral-Spatial Classification of Hyperspectral Images
    Sun, He
    Ren, Jinchang
    Zhao, Huimin
    Yan, Yijun
    Zabalza, Jaime
    Marshall, Stephen
    [J]. REMOTE SENSING, 2019, 11 (05)
  • [22] Spectral-Spatial Anomaly Detection via Collaborative Representation Constraint Stacked Autoencoders for Hyperspectral Images
    Zhao, Chunhui
    Li, Chuang
    Feng, Shou
    Li, Wei
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [23] Multiple Spectral-Spatial Representation Based on Tensor Decomposition for HSI Anomaly Detection
    Wang, Yujian
    Li, Dan
    Wu, Hanjie
    Li, Xiaojun
    Kong, Fanqiang
    Wang, Qiang
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 3539 - 3551
  • [24] JOINT SPARSE REPRESENTATION AND MULTITASK LEARNING FOR HYPERSPECTRAL ANOMALY DETECTION
    Zhang, Yuxiang
    He, Kai
    Dong, Yanni
    Wu, Ke
    Chen, Tao
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2424 - 2427
  • [25] SPECTRAL-SPATIAL JOINT TARGET DETECTION OF HYPERSPECTRAL IMAGE BASED ON TRANSFER LEARNING
    Feng, Zhenyuan
    Zhang, Junping
    Feng, Jia
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1770 - 1773
  • [26] SPECTRAL-SPATIAL HYPERSPECTRAL IMAGE CLASSIFICATION VIA SUPERPIXEL MERGING AND SPARSE REPRESENTATION
    Fu, Wei
    Li, Shutao
    Fang, Leyuan
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4971 - 4974
  • [27] Spectral-Spatial Anomaly Detection in Hyperspectral Imagery Based on Dual-Domain Autoencoders
    Aghili, Mohamad Ebrahim
    Ghassemian, Hassan
    Arani, Maryam Imani
    [J]. PROCEEDINGS OF THE 13TH IRANIAN/3RD INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, MVIP, 2024, : 1 - 5
  • [28] Destripe Hyperspectral Images with Spectral-spatial Adaptive Unidirectional Variation and Sparse Representation
    Zhou, Dabiao
    Wang, Dejiang
    Huo, Lijun
    Jia, Ping
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF KOREA, 2016, 20 (06) : 752 - 761
  • [29] SPECTRAL-SPATIAL HYPERSPECTRAL CLASSIFICATION VIA SHAPE-ADAPTIVE SPARSE REPRESENTATION
    Fu, Wei
    Li, Shutao
    Fang, Leyuan
    Kang, Xudong
    Benediktsson, Jon Atli
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3430 - 3433
  • [30] Hyperspectral anomaly detection using spectral-spatial features based on the human visual system
    Taghipour, Ashkan
    Ghassemian, Hassan
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (23) : 8683 - 8704