Anomaly Detection with Bayesian Gauss Background Model in Hyperspectral Images

被引:0
|
作者
Sahin, Yunus Emre [1 ]
Arisoy, Sertac [2 ]
Kayabol, Koray [2 ]
机构
[1] TUBITAK, BILGEM, Kocaeli, Turkey
[2] Gebze Tekn Univ, Elekt Muhendisligi Bolumu, Kocaeli, Turkey
关键词
Hyperspecral Image; Bayesian Gaussian Background Model; Anomaly Detection; Reed Xiaoli; RX; ALGORITHM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we propose Bayesian Gaussian Background Model (BGBM) for anomaly detection problem on hyperspectral images. BGBM is used in a local window for learning the background. BGBM gives better results than existing methods on real hyperspectral images in the estimation of covariance matrix in case of limited number of samples.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Nonparametric Bayesian background estimation for hyperspectral anomaly detection
    Arisoy, Sertac
    Kayabol, Koray
    [J]. DIGITAL SIGNAL PROCESSING, 2021, 111 (111)
  • [2] Anomaly detection using background prediction in hyperspectral images
    Liu De-lian
    He Guo-jing
    Zhang Jian-qi
    [J]. INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2011: ADVANCES IN INFRARED IMAGING AND APPLICATIONS, 2011, 8193
  • [3] LOCAL-GLOBAL BACKGROUND MODELING FOR ANOMALY DETECTION IN HYPERSPECTRAL IMAGES
    Madar, Eyal
    Kuybeda, Oleg
    Malah, David
    Barzohar, Meir
    [J]. 2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 368 - 371
  • [4] NON-GAUSSIAN BACKGROUND MODELING FOR ANOMALY DETECTION IN HYPERSPECTRAL IMAGES
    Madar, Eyal
    Malah, David
    Barzohar, Meir
    [J]. 19TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2011), 2011, : 1125 - 1129
  • [5] Improved estimation of local background covariance matrix for anomaly detection in hyperspectral images
    Matteoli, Stefania
    Diani, Marco
    Corsini, Giovanni
    [J]. OPTICAL ENGINEERING, 2010, 49 (04)
  • [6] ANOMALY DETECTION IN HYPERSPECTRAL IMAGES VIA SUPERPIXEL SEGMENTATION AND UNSUPERVISED BACKGROUND LEARNING
    Arisoy, Sertac
    Kayabol, Koray
    [J]. 2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [7] A Hyperspectral Imagery Anomaly Detection Algorithm Based on Gauss-Markov Model
    Gao Kun
    Liu Ying
    Wang Li-jing
    Zhu Zhen-yu
    Cheng Hao-bo
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35 (10) : 2846 - 2850
  • [8] Salient object detection in hyperspectral images using deep background reconstruction based anomaly detection
    Singh, Pangambam Sendash
    Karthikeyan, Subbiah
    [J]. REMOTE SENSING LETTERS, 2022, 13 (02) : 184 - 195
  • [9] BASO: A Background-Anomaly Component Projection and Separation Optimized Filter for Anomaly Detection in Hyperspectral Images
    Chang, Shizhen
    Du, Bo
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (07): : 3747 - 3761
  • [10] PATH-BASED BACKGROUND MODEL AUGMENTATION FOR HYPERSPECTRAL ANOMALY DETECTION
    Emerson, Tegan H.
    Doster, Timothy
    Olson, Colin C.
    [J]. 2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,