DINO: Distributed Newton-Type Optimization Method

被引:0
|
作者
Crane, Rixon [1 ]
Roosta, Fred [1 ,2 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld, Australia
[2] Int Comp Sci Inst, Berkeley, CA 94704 USA
基金
澳大利亚研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel communication-efficient Newton-type algorithm for finite-sum optimization over a distributed computing environment. Our method, named DINO, overcomes both theoretical and practical shortcomings of similar existing methods. Under minimal assumptions, we guarantee global sub-linear convergence of DINO to a first-order stationary point for general non-convex functions and arbitrary data distribution over the network. Furthermore, for functions satisfying Polyak-Lojasiewicz (PL) inequality, we show that DINO enjoys a linear convergence rate. Our proposed algorithm is practically parameter free, in that it will converge regardless of the selected hyper-parameters, which are easy to tune. Additionally, its sub-problems are simple linear least-squares, for which efficient solvers exist, and numerical simulations demonstrate the efficiency of DINO as compared with similar alternatives.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] DONE: Distributed Approximate Newton-type Method for Federated Edge Learning
    Dinh, Canh T.
    Tran, Nguyen H.
    Nguyen, Tuan Dung
    Bao, Wei
    Balef, Amir Rezaei
    Zhou, Bing B.
    Zomaya, Albert Y.
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (11) : 2648 - 2660
  • [12] On the convergence of an inexact Newton-type method
    Zhou, Guanglu
    Qi, Liqun
    [J]. OPERATIONS RESEARCH LETTERS, 2006, 34 (06) : 647 - 652
  • [13] A globally convergent proximal Newton-type method in nonsmooth convex optimization
    Mordukhovich, Boris S.
    Yuan, Xiaoming
    Zeng, Shangzhi
    Zhang, Jin
    [J]. MATHEMATICAL PROGRAMMING, 2023, 198 (01) : 899 - 936
  • [14] A globally convergent proximal Newton-type method in nonsmooth convex optimization
    Boris S. Mordukhovich
    Xiaoming Yuan
    Shangzhi Zeng
    Jin Zhang
    [J]. Mathematical Programming, 2023, 198 : 899 - 936
  • [15] FedDANE: A Federated Newton-Type Method
    Li, Tian
    Sahu, Anit Kumar
    Zaheer, Manzil
    Sanjabi, Maziar
    Talwalkar, Ameet
    Smith, Virginia
    [J]. CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 1227 - 1231
  • [16] INEXACT NEWTON-TYPE OPTIMIZATION WITH ITERATED SENSITIVITIES
    Quirynen, Rien
    Gros, Sebastien
    Diehl, Moritz
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (01) : 74 - 95
  • [17] Gauss–Newton-type methods for bilevel optimization
    Jörg Fliege
    Andrey Tin
    Alain Zemkoho
    [J]. Computational Optimization and Applications, 2021, 78 : 793 - 824
  • [18] A Superlinearly-Convergent Proximal Newton-Type Method for the Optimization of Finite Sums
    Rodomanov, Anton
    Kropotov, Dmitry
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [19] A proximal Newton-type method for equilibrium problems
    Santos, P. J. S.
    Santos, P. S. M.
    Scheimberg, S.
    [J]. OPTIMIZATION LETTERS, 2018, 12 (05) : 997 - 1009
  • [20] Newton-type method for solving generalized inclusion
    Santos, P. S. M.
    Silva, G. N.
    Silva, R. C. M.
    [J]. NUMERICAL ALGORITHMS, 2021, 88 (04) : 1811 - 1829