Gauss–Newton-type methods for bilevel optimization

被引:0
|
作者
Jörg Fliege
Andrey Tin
Alain Zemkoho
机构
[1] Management Sciences and Information Systems (CORMSIS),Centre for Operational Research
[2] University of Southampton,School of Mathematical Sciences
关键词
Bilevel optimization; Value function reformulation; Partial exact penalization; Gauss-Newton method;
D O I
暂无
中图分类号
学科分类号
摘要
This article studies Gauss–Newton-type methods for over-determined systems to find solutions to bilevel programming problems. To proceed, we use the lower-level value function reformulation of bilevel programs and consider necessary optimality conditions under appropriate assumptions. First, under strict complementarity for upper- and lower-level feasibility constraints, we prove the convergence of a Gauss–Newton-type method in computing points satisfying these optimality conditions under additional tractable qualification conditions. Potential approaches to address the shortcomings of the method are then proposed, leading to alternatives such as the pseudo or smoothing Gauss–Newton-type methods for bilevel optimization. Our numerical experiments conducted on 124 examples from the recently released Bilevel Optimization LIBrary (BOLIB) compare the performance of our method under different scenarios and show that it is a tractable approach to solve bilevel optimization problems with continuous variables.
引用
收藏
页码:793 / 824
页数:31
相关论文
共 50 条
  • [1] Gauss-Newton-type methods for bilevel optimization
    Fliege, Jorg
    Tin, Andrey
    Zemkoho, Alain
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 78 (03) : 793 - 824
  • [2] New Proximal Newton-Type Methods for Convex Optimization
    Adler, Ilan
    Hu, Zhiyue T.
    Lin, Tianyi
    [J]. 2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 4828 - 4835
  • [3] Newton-type methods for constrained optimization with nonregular constraints
    Golishnikov M.M.
    Izmailov A.F.
    [J]. Computational Mathematics and Mathematical Physics, 2006, 46 (8) : 1299 - 1319
  • [4] Globally convergent Newton-type methods for multiobjective optimization
    Goncalves, M. L. N.
    Lima, F. S.
    Prudente, L. F.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 83 (02) : 403 - 434
  • [5] Globally convergent Newton-type methods for multiobjective optimization
    M. L. N. Gonçalves
    F. S. Lima
    L. F. Prudente
    [J]. Computational Optimization and Applications, 2022, 83 : 403 - 434
  • [6] Semismooth Newton-type method for bilevel optimization: global convergence and extensive numerical experiments
    Fischer, Andreas
    Zemkoho, Alain B.
    Zhou, Shenglong
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (05): : 1770 - 1804
  • [7] Inexact Newton-type methods
    Argyros, Ioannis K.
    Hilout, Said
    [J]. JOURNAL OF COMPLEXITY, 2010, 26 (06) : 577 - 590
  • [8] Newton-type methods for optimization problems without constraint qualifications
    Izmailov, AF
    Solodov, MV
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2004, 15 (01) : 210 - 228
  • [9] Newton-type multilevel optimization method
    Ho, Chin Pang
    Kocvara, Michal
    Parpas, Panos
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (01): : 45 - 78
  • [10] On Newton-type methods with cubic convergence
    Homeier, HHH
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (02) : 425 - 432