On the convergence of an inexact Newton-type method

被引:12
|
作者
Zhou, Guanglu [1 ]
Qi, Liqun
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
澳大利亚研究理事会;
关键词
monotone equations; Newton-type method; local convergence; error bound condition;
D O I
10.1016/j.orl.2005.11.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we give local convergence results of an inexact Newton-type method for monotone equations under a local error bound condition. This condition may hold even for problems with non-isolated solutions, and it therefore is weaker than the standard non-singularity condition. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:647 / 652
页数:6
相关论文
共 50 条
  • [1] Weak convergence conditions for Inexact Newton-type methods
    Argyros, Ioannis K.
    Hilout, Said
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) : 2800 - 2809
  • [2] Inexact Newton-type methods
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF COMPLEXITY, 2010, 26 (06) : 577 - 590
  • [3] METRICALLY REGULAR MAPPING AND ITS UTILIZATION TO CONVERGENCE ANALYSIS OF A RESTRICTED INEXACT NEWTON-TYPE METHOD
    Rashid, Mohammed Harunor
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (01): : 44 - 69
  • [4] An inexact Newton-type method for inverse singular value problems
    Bai, Zheng-Jian
    Xu, Shufang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (2-3) : 527 - 547
  • [5] INEXACT NEWTON-TYPE OPTIMIZATION WITH ITERATED SENSITIVITIES
    Quirynen, Rien
    Gros, Sebastien
    Diehl, Moritz
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (01) : 74 - 95
  • [6] Inexact proximal DC Newton-type method for nonconvex composite functions
    Shummin Nakayama
    Yasushi Narushima
    Hiroshi Yabe
    Computational Optimization and Applications, 2024, 87 : 611 - 640
  • [7] On the local convergence of inexact Newton-type methods under residual control-type conditions
    Ren, Hongmin
    Argyros, Ioannis K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (01) : 218 - 228
  • [8] ON THE SEMILOCAL CONVERGENCE OF A NEWTON-TYPE METHOD OF ORDER THREE
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (01): : 1 - 27
  • [9] Inexact proximal DC Newton-type method for nonconvex composite functions
    Nakayama, Shummin
    Narushima, Yasushi
    Yabe, Hiroshi
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 87 (02) : 611 - 640
  • [10] On local convergence of a Newton-type method in Banach space
    Argyros, Ioannis K.
    Chen, Jinhai
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (08) : 1366 - 1374