On the convergence of an inexact Newton-type method

被引:12
|
作者
Zhou, Guanglu [1 ]
Qi, Liqun
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
澳大利亚研究理事会;
关键词
monotone equations; Newton-type method; local convergence; error bound condition;
D O I
10.1016/j.orl.2005.11.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we give local convergence results of an inexact Newton-type method for monotone equations under a local error bound condition. This condition may hold even for problems with non-isolated solutions, and it therefore is weaker than the standard non-singularity condition. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:647 / 652
页数:6
相关论文
共 50 条
  • [31] Convergence Analysis of the Gauss–Newton-Type Method for Lipschitz-Like Mappings
    M. H. Rashid
    S. H. Yu
    C. Li
    S. Y. Wu
    Journal of Optimization Theory and Applications, 2013, 158 : 216 - 233
  • [32] Convergence of the modified Newton-type iteration method for the generalized absolute value equation
    Fang, Ximing
    Huang, Minhai
    ARABIAN JOURNAL OF MATHEMATICS, 2025, : 29 - 37
  • [33] Extended Newton-type method and its convergence analysis for nonsmooth generalized equations
    M. H. Rashid
    Journal of Fixed Point Theory and Applications, 2017, 19 : 1295 - 1313
  • [34] On the convergence of Newton-type methods using recurrent functions
    Argyros, Ioannis K.
    Hilout, Said
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (14) : 3273 - 3296
  • [35] Newton-type multilevel optimization method
    Ho, Chin Pang
    Kocvara, Michal
    Parpas, Panos
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (01): : 45 - 78
  • [36] On Newton-type methods for multiple roots with cubic convergence
    Homeier, H. H. H.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 231 (01) : 249 - 254
  • [37] Superlinear Convergence of a Newton-Type Algorithm for Monotone Equations
    G. Zhou
    K. C. Toh
    Journal of Optimization Theory and Applications, 2005, 125 : 205 - 221
  • [38] Superlinear convergence of a Newton-type algorithm for monotone equations
    Zhou, G
    Toh, KC
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 125 (01) : 205 - 221
  • [39] FedDANE: A Federated Newton-Type Method
    Li, Tian
    Sahu, Anit Kumar
    Zaheer, Manzil
    Sanjabi, Maziar
    Talwalkar, Ameet
    Smith, Virginia
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 1227 - 1231
  • [40] On convergence of the additive Schwarz preconditioned inexact Newton method
    An, HB
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) : 1850 - 1871