ON THE WILLMORE'S THEOREM FOR CONVEX HYPERSURFACES

被引:0
|
作者
Zhou Jiazu [1 ,2 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] SE Guizhou Vocat Coll Technol Nationalities, Kaili 556000, Peoples R China
关键词
Mean curvature; the Willmore deficit; Minkowski quermassintegrale;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a compact convex hypersurface of class C-2, which is assumed to bound a nonempty convex body K in the Euclidean space R-n and H be the mean curvature of M. We obtain a lower bound of the total square of mean curvature integral(M) H(2)dA. The bound is the Minkowski quermassintegral of the convex body K. The total square of mean curvature attains the lower bound when M is an (n - 1)-sphere.
引用
收藏
页码:361 / 366
页数:6
相关论文
共 50 条
  • [21] Rado's Theorem for CR Functions on Hypersurfaces
    Berhanu, S.
    Li, Xiaoshan
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (10)
  • [22] Schmidt's Subspace Theorem with Moving Hypersurfaces
    Chen, Zhihua
    Ru, Min
    Yan, Qiming
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (15) : 6305 - 6329
  • [23] THE SURFACE DIFFUSION AND THE WILLMORE FLOW FOR UNIFORMLY REGULAR HYPERSURFACES
    LeCrone, Jeremy
    Shao, Yuanzhen
    Simonett, Gieri
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (12): : 3503 - 3524
  • [24] Willmore-type variational problem for foliated hypersurfaces
    Rovenski, Vladimir
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (06): : 4025 - 4042
  • [25] Rigidity theorem for Willmore surfaces in a sphere
    HONGWEI XU
    DENGYUN YANG
    Proceedings - Mathematical Sciences, 2016, 126 : 253 - 260
  • [26] Antipodal convex hypersurfaces
    Itoh, Jin-ichi
    Rouyer, Joel
    Vilcu, Costin
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (03): : 411 - 426
  • [27] CONVEX HYPERSURFACES IN CN
    BELOSHAPKA, VK
    BYCHKOV, SN
    MATHEMATICAL NOTES, 1986, 40 (5-6) : 854 - 857
  • [28] Inellipses of Convex Polygons, Brianchon's Theorem, and Bradley's Theorem
    Tupan, Alexandru
    AMERICAN MATHEMATICAL MONTHLY, 2021, 129 (01): : 4 - 23
  • [29] LOCALLY CONVEX HYPERSURFACES
    JONKER, LB
    NORMAN, RD
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (03): : 531 - 538
  • [30] AN EXPANSION OF CONVEX HYPERSURFACES
    URBAS, JIE
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 33 (01) : 91 - 125