ON THE WILLMORE'S THEOREM FOR CONVEX HYPERSURFACES

被引:0
|
作者
Zhou Jiazu [1 ,2 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] SE Guizhou Vocat Coll Technol Nationalities, Kaili 556000, Peoples R China
关键词
Mean curvature; the Willmore deficit; Minkowski quermassintegrale;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a compact convex hypersurface of class C-2, which is assumed to bound a nonempty convex body K in the Euclidean space R-n and H be the mean curvature of M. We obtain a lower bound of the total square of mean curvature integral(M) H(2)dA. The bound is the Minkowski quermassintegral of the convex body K. The total square of mean curvature attains the lower bound when M is an (n - 1)-sphere.
引用
收藏
页码:361 / 366
页数:6
相关论文
共 50 条
  • [31] Closed Willmore minimal hypersurfaces with constant scalar curvature in S5(1) are isoparametric
    Deng, Qintao
    Gu, Huiling
    Wei, Qiaoyu
    ADVANCES IN MATHEMATICS, 2017, 314 : 278 - 305
  • [32] Rigidity theorem for Willmore surfaces in a sphere
    Xu, Hongwei
    Yang, Dengyun
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2016, 126 (02): : 253 - 260
  • [33] A Mobius rigidity of compact Willmore hypersurfaces in Sn+1
    Lin, Limiao
    Li, Tongzhu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (01)
  • [34] On Green's proof of the infinitesimal Torelli theorem for hypersurfaces
    Rizzi, Luca
    Zucconi, Francesco
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (04) : 689 - 709
  • [35] On smooth Cauchy hypersurfaces and Geroch's splitting theorem
    Bernal, AN
    Sánchez, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 243 (03) : 461 - 470
  • [36] On Smooth Cauchy Hypersurfaces and Geroch’s Splitting Theorem
    Antonio N. Bernal
    Miguel Sánchez
    Communications in Mathematical Physics, 2003, 243 : 461 - 470
  • [37] A calculus for conformal hypersurfaces and new higher Willmore energy functionals
    Gover, A. Rod
    Waldron, Andrew
    ADVANCES IN GEOMETRY, 2020, 20 (01) : 29 - 60
  • [38] Willmore hypersurfaces with constant Mobius curvature in Rn+1
    Li, Tongzhu
    Ma, Xiang
    Wang, Changping
    GEOMETRIAE DEDICATA, 2013, 166 (01) : 251 - 267
  • [39] A Bernstein Type Theorem for Entire Willmore Graphs
    Chen, Jingyi
    Lamm, Tobias
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (01) : 456 - 469
  • [40] CONVEX HYPERSURFACES WITH PINCHED PRINCIPAL CURVATURES AND FLOW OF CONVEX HYPERSURFACES BY HIGH POWERS OF CURVATURE
    Andrews, Ben
    McCoy, James
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (07) : 3427 - 3447