ON THE WILLMORE'S THEOREM FOR CONVEX HYPERSURFACES

被引:0
|
作者
Zhou Jiazu [1 ,2 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] SE Guizhou Vocat Coll Technol Nationalities, Kaili 556000, Peoples R China
关键词
Mean curvature; the Willmore deficit; Minkowski quermassintegrale;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a compact convex hypersurface of class C-2, which is assumed to bound a nonempty convex body K in the Euclidean space R-n and H be the mean curvature of M. We obtain a lower bound of the total square of mean curvature integral(M) H(2)dA. The bound is the Minkowski quermassintegral of the convex body K. The total square of mean curvature attains the lower bound when M is an (n - 1)-sphere.
引用
收藏
页码:361 / 366
页数:6
相关论文
共 50 条
  • [41] Global hypersurfaces of section for geodesic flows on convex hypersurfaces
    Cho, Sunghae
    Lee, Dongho
    ARCHIV DER MATHEMATIK, 2024, 123 (03) : 291 - 307
  • [42] A Bernstein Type Theorem for Entire Willmore Graphs
    Jingyi Chen
    Tobias Lamm
    Journal of Geometric Analysis, 2013, 23 : 456 - 469
  • [43] CONVEX HYPERSURFACES AND THEIR CLOSED CHARACTERISTICS
    EKELAND, I
    HOFER, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 304 (09): : 237 - 240
  • [44] CYLINDER THEOREMS FOR CONVEX HYPERSURFACES
    TOPONOGOV, VA
    SIBERIAN MATHEMATICAL JOURNAL, 1994, 35 (04) : 815 - 817
  • [45] On locally convex hypersurfaces with boundary
    Trudinger, NS
    Wang, XJ
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2002, 551 : 11 - 32
  • [46] Convex hypersurfaces of prescribed curvatures
    Guan, B
    Guan, PF
    ANNALS OF MATHEMATICS, 2002, 156 (02) : 655 - 673
  • [47] Contracting convex hypersurfaces by curvature
    Ben Andrews
    James McCoy
    Yu Zheng
    Calculus of Variations and Partial Differential Equations, 2013, 47 : 611 - 665
  • [48] Convex hypersurfaces in Hadamard manifolds
    Borisenko, AA
    COMPLEX, CONTACT AND SYMMETRIC MANIFOLDS: IN HONOR OF L. VANHECKE, 2005, 234 : 27 - 39
  • [49] ALMOST SPHERICAL CONVEX HYPERSURFACES
    MOORE, JD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A169 - A170
  • [50] BOUNDARY OF LOCALLY CONVEX HYPERSURFACES
    LABOURIE, F
    INVENTIONES MATHEMATICAE, 1987, 90 (01) : 115 - 138